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Renewable energy sources are being adopted in Japan
to contribute to the decarbonisation of society and
enhance social resilience. The offshore wind farms
(WFs) are expected to overcome geographical
constraints for a large amount of onshore WFs to
install.

HVDC systems are used to transmit generated power
of the large-scale offshore WFs to the onshore grid
since they are suitable for long-distance cable
transmission. The technology development for the
multi-terminal HVDC (MT-HVDC) system is required to
achieve the multi-directional power exchange among
multiple offshore WFs and multiple onshore grids.

An R&D project "Next-generation offshore HYDC
system development project” started in fiscal 2015 as
a five-year plan to promote the advanced technologies
for the offshore MT-HVDC system.

The R&Ds on system technologies included simulation
studies on the control and protection scheme for
multivendor interoperability of the offshore MT-HVDC
system and business assessment etc.

The R&Ds on component technologies included
studies on the prototype dc circuit breaker aiming dc
voltage 500 kV applications, studies on the dynamic
rating technology for the dc submarine cable, and
studies on the construction method for the offshore
platform foundation etc.

SIMULATION MODELS OF MT-HVDC

Target system and simulation tools

Digital real-time simulation studies were carried out
using the five-terminal HVDC system model, as shown
in Figure 1. The rated output power of the WF
connected to the offshore terminal is 1,500 MW each.
To avoid power output suppression of WFs even in
case of a fault in one of the onshore converters, each
onshore terminal comprises two sets of the converters
rated at 1,500 MW. The power exchange between
different onshore grids is assumed as the use purpose
of this five-terminal system as well as power
transmission between offshore WFs and onshore grid.
The HVDC system configuration is the symmetrical
monopole with rated dc voltage +500 kV.
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¢ The dc circuit breaker is connected to the dc bus of each
terminal, and each terminal has the modular multi-level
converter (MMC) type voltage source converter.

* Figure 2 shows a three-terminal HVDC model for the off-
line instantaneous value analysis. The HVDC model has a
monopole configuration with one offshore converter
station and two onshore converter stations. These
simulation tools enable easy modelling and share of the
black-boxed power electronics equipment model
between members without leakage of the vendors'
intellectual property.
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* Each terminal's AC/DC converter is an MMC (modular
multi-level converter)-type voltage source converter.
Each arm of the converter is composed of multiple
chopper cells and an arm reactor.

* Figure 3 shows a control block diagram of the AC/DC
converter. The power controller is used as a total
integrated controller, including DC power-to-DC
voltage characteristics, active power control, capacitor
voltage batch control, reactive power control, AC
connection point voltage control, and arm balance
control. The DC power-to-DC voltage relation has a
droop characteristic. The current and pulse controllers
follow the power controller.
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Figure 3 AC/DC converter (pole) control block diagram

Figure 1 five-terminal HVDC system for power transfer from wind farms.
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High-level control for coordination between Table I List of signal interface sent from high-level controller to
terminals terminal controller
Related
* A high-level controller is designed in the project for Cutput
Minor category oot mation [0 [Remarks
coordination between the HVDC terminals. An offshore o furction
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jo: Line interrupt
* A HVDC system operator plans the power references for ctation’ 1: Termina tion
. ivati
the HVDC terminals, based on the flowchart for power senmine ticn converter  (— 2 startup status
dispatch between the terminals, as shown in Figure 4. 3: Ordinary operation status
J2: Shutdown status
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* On the other hand, the control blocks and control
parameters for terminal control (converter control) are
not specified in the standard specifications.

DIGITAL REAL-TIME SIMULATION

i vanous value: Transmission line power fiow or onverter station power

Figure 4 Flow chart for power dispatch between HVDC terminals * Digital real-time simulation studies were carried out
by high-level controller using the five-terminal HVDC system model, as
shown in Figure 1. The five-terminal HVDC system
DRAFT OF STANDARD SPECIFICATIONS model comprises two terminals modelled by one of
the two vendors and the other three modelled by
¢ The draft standard specification includes the other vendor. Table II shows the vendor
(1) definition of MT-HVDC equipment (MMC, DC circuit allocations selected for the simulations.

breaker, initial charger of cell capacitor, breaking
chopper, etc.),

(2) concept of high-level control (flow chart of power
dispatch function),

(3) steady-state control (droop characteristic between
DC power and DC voltage),

(4) signal interface between the terminal controller and
high-level controller,

(5) classification of fault locations such as offshore AC
feeders, AC/DC converters, DC bus, DC cables, onshore
AC grids and responses required for the equipment
during and after the fault.

* The digital real-time simulations with the simplified
AC grids cover start and stop processes, steady-state
operation, change in the terminal power reference,
and sudden change in the offshore wind power
output, faults in the onshore AC grid and those in DC
cable faults. Figure 5 shows the locations of various
DC faults; a positive line-to-ground fault at the DC
cable, a positive bus-to-ground at the terminal DC
bus, and a short circuit fault between the positive
and negative DC buses.

* The draft standard specification describes the list of
signal interfaces between the high-level and terminal
controllers (DC voltage reference and upper/lower limits,
power reference and upper/lower limits, droop slope,
etc.) and the signal attributes (analogue or digital), Table
| shows the list of signal interfaces sent by the high-level
controller and received by the terminal controller.
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Table Il shows the simulation results of all the DC
fault cases. In the table, offshore terminals 1, 2 and
3 are expressed by F1, F2 and F3, and N1 and N2
define onshore terminals 1 and 2. The terminals
stopped automatically by the protecting action
during the DC fault are indicated in the table cells.
The terminals which are restarted immediately after
stopping are enclosed in parentheses.

The results show a difference between the stopped
terminals in the single-vendor cases and those in the

multi-vendor cases. The operational continuity
depends on the vendor allocation in the five
terminals. For example, in case B-10, offshore
terminal F2 is stopped in the vendor allocation of

ABAAB. However, terminal F2 continues operation in

the vendor allocation of ABBAB.

Figure 6 compares the AC voltage and current, DC
voltage and current, cell capacitor voltage and AC
powers of offshore terminals of F1, F2 and F3 in the
vendor allocations of ABAAB and ABBAB in the case
of B-10. It is considered that the difference in

operational continuity is caused by the fact that the

interoperability between the terminals is designed
more optimally in the single-vendor MT-HVDC
system than in the multivendor MT-HVDC system.
The difference in operation is also caused by the
difference between the control and protection
blocks and parameters designed by vendors A and
those by vendor B.
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Figure 5 Fault locations in DC system
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Table II Vendor allocation in five-terminal HVDC system model

¢ Offshore | Offshore | Offshore | Offshore | Offshore
3S€ |terminal 1|terminal 2|terminal 3|terminal 1 |terminal 2
1 | Vendor A | Vendor B | Vendor A | Vendor A | Vendor B
2 | Vendor A | Vendor B | Vendor B | Vendor A | Vendor B
3 | Vendor B | Vendor A | Vendor B | Vendor B | Vendor A
4 | Vendor B | Vendor A | Vendor A | Vendor B | Vendor A
Table Il Fault cases and results in multivendor five-terminal HVDC system
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Conclusion

In Japan, the verification process for multivendor
interoperability of the offshore MT-HVDC has been
progressing smoothly.

Series of activities, such as cautious brushing up of
standard specification documents, standardizing of
control signal interfaces, as well as frequent
communication regarding the results of waveforms
simulation, shared with all of the participating
organizations, including two vendors, have achieved
good results so far.

Project members confirmed that the operation of
the MT-HVDC system does not evoke any significant
problem regardless of several differences in
simulated waveform response such as overshoot
height and convergence time that were found
depending on the combination of vendors.
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Waveforms of offshore terminals in case of DC fault of B-10
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