

Study Committee B4

DC systems and power electronics

Paper ID 10896

Integration of power flow controllers in HVDC grids

Florent MOREL, Joan SAU BASSOLS, Sellé TOURE, Serge POULLAIN, Frank JACQUIER

Supergrid Institute

Motivation

 Not enough degrees of freedom to control all currents in dc grids

- Potential congestions, power curtailments, needs for grid reinforcement
- Control of current distribution in dc grids needs additional hardware → power flow controllers
- Interest of interline power flow controllers

- How to integrate this converter in a dc switch yard?
 - Which busbar arrangement?
 - How to insert and bypass?

DC busbars

- Fault at a node → major consequences
- Dc busbar design related to targeted availability
- Different possible arrangements
- Example: Double busbar single breaker arrangement

Busbar arrangement with PFC

- PFC replaces a busbar or is added as an additional PFC-busbar
- Constraints
 - A fault in a terminal must be isolated
 - Single busbars: a fault in the busbar may stop the power transmission
 - Double busbars: a fault in a busbar can <u>temporally</u> stop the power transmission

- Switches "S_x" does not have current breaking capability
- For each option, assess if power transmission can be resumed after CB opening and reconfiguration.
- Example for option 2

Faults	Switches	Comments
MMC	S ₁ S ₂ S ₃ S ₄ S ₅ open / S ₆ closed	1 path
OHL 1	S ₁ S ₂ S ₄ S ₅ S ₆ open / S ₃ closed	1 path
OHL 2	S ₁ S ₃ S ₄ S ₅ S ₆ open / S ₂ closed	1 path
PFC	S ₁ S ₄ S ₅ open / S ₂ S ₆ closed / S ₃ DM S ₁ S ₄ S ₅ open / S ₃ S ₆ closed / S ₂ DM S ₁ S ₄ S ₅ open / S ₂ S ₃ closed / S ₆ DM	3 paths PPC

PPC: Possible power curtailment since the PFC cannot be used. DM: Does not matter.

http://www.cigre.org

Study Committee B4

DC systems and power electronics

Paper ID_10896

Integration of power flow controllers in HVDC grids

Florent MOREL, Joan SAU BASSOLS, Sellé TOURE, Serge POULLAIN, Frank JACQUIER

Supergrid Institute

Sequence of operation for insertion

- Bypass and insertion while the dc grid is in operation
- A sequence among other possible

PFC bypassed and grounded

•

PFC ungrounded

CBA S1 S4 CBB CH. 1 MMC S4 S4 CBC CH. 1 S4 S4 CBC CH. 1 S4 CBC CH. 1

S₂ open

PFC in operation

Case study and models

- Case study based on Zhangbei HVDC grid
- Arc behavior modeled when opening bypass switches

S₁, S₄ and S₅ closed, S₆ open

Study Committee B4

DC systems and power electronics

Paper ID_10896

Integration of power flow controllers in HVDC grids

Florent MOREL, Joan SAU BASSOLS, Sellé TOURE, Serge POULLAIN, Frank JACQUIER

Supergrid Institute

Results for insertion

Bypass

 See paper for sequence of operation for bypass and corresponding simulation results

Requirements for switches

• Example of S₂

Conclusions

- Investigation of different busbar arrangements with PFC
- Selection of a circuit with good availability and moderate number of switches
- PFC can be inserted, bypassed and grounded without disturbing power transmission in the dc grid
- Requirements for S₂ and S₃
 - in between transfer line switches and transfer busbar switches
 - Metallic return transfer breaker (MRTB) are in operation and have higher specifications → bypass switches are feasible
- Other switches can be disconnectors (opening when the current is very low or even zero).

