

including cables and overhead lines

Pascal TORWELLE*1, Bertrand RAISON1.2, Trung Dung LE3, Marc PETIT3, Alberto BERTINATO1

¹SuperGrid Institute SAS ²Univ. Grenoble Alpes. CNRS. Grenoble INP. G2Elab ³Univ Paris-Saclav. CentraleSupélec. CNRS. GeePs

Motivation

- A cost effective solution is to convert existing AC Overhead Line (OHL) corridors into DC lines or to build new DC OHL, rather than installing new cables
- New challenges for MTDC protection design
 - Higher fault probability (12 times higher compared to cables)
 - Different transient characteristics (OHLs have a higher lineic inductance than cables and fault resistances of several tens of Ohms)

Conductor characteristics comparison

- Impact on non-selective fault clearing strategies
 - A fault event leads to a lower voltage drop and lower fault current contribution which may entail fault detection failures at distant substations
 - Increasing frequency of temporary shutdown of the entire MTDC grid due to higher fault probability

http://www.cigre.org

Severity adapted fault clearing strategy for MTDC grids including cables and overhead lines

Pascal TORWELLE*1, Bertrand RAISON1,2, Trung Dung LE3, Marc PETIT3, Alberto BERTINATO

¹SuperGrid Institute SAS ²Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab ³Univ Paris-Saclay, CentraleSupélec, CNRS, GeePs

Benchmark grid

- Bipolar configuration with DMR
- Hybrid topology with cables and overhead lines
- DCCBs (T_{op}=10ms) at line ends & MMC output
- Optimized DC reactor design (<35mH)
- Extensive testing (136 fault scenarios)

Low impact fault clearing

(Fault at 33% of L14, Rf=10Ω)

400

Voltage[k/]

0

20

0 Current[kA]

n

30

Current[kA] 01 01

1500

500

-500

3000

2000

1000

a)

0

P AC [MW] 1000

Q AC[MVAR]

O

High impact fault clearing

http://www.cigre.org

Severity adapted fault clearing strategy for MTDC grids including cables and overhead lines

Pascal TORWELLE*1, Bertrand RAISON^{1,2}, Trung Dung LE³, Marc PETIT³, Alberto BERTINATO¹

¹SuperGrid Institute SAS ²Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab ³Univ Paris-Saclay, CentraleSupélec, CNRS, GeePs

Fault severity discrimination algorithms

- Rate Of Change Of Voltage (ROCOV)
- Model based algorithms
- Wavelet transformation algorithm

Comparison with existing protection strategies

	Severity-	Non-selective	Fully-selective	Fully-selective
	adapted		T _{op,DCCB} =10ms	T _{op,DCCB} =2ms
Sum of DCR [mH]	223	40	2288	880
Sum of energy absorption [MJ]	187	108	311	97
CAPEX per pole [M€]	55	53	70	88
Comparison of CAPEX	63%	60%	80%	100%

Conclusions

- Novel severity-adapted protection strategy for MTDC grids consisting of cables & overhead lines
- Improvement of power restoration time compared to non-selective protection strategies
- Significant reduction of CAPEX compared to protection equipment required for fully-selective fault clearing strategies

Compared to non-selective protection strategies

- Significant power restoration performance improvement compared to non-selective strategies
- Faster power restoration
- Higher grid availability

Compared to fully-selective protection strategies

- Significant reduction of DC reactor requirements
- The proposed protection strategy uses cost effective mechanical DC breakers instead of ultra-fast hybrid DC breakers and lower value of DC reactors which further reduces the cost and the risk of DC voltage dynamic instabilities.
- The proposed strategy is able to selectively eliminate the fault for most of the OHL faults with a power restoration time close to fullselective strategies