

av Economics

Study Committee B4

DC Systems and Power Electronics

Paper ID 11087

European offshore grid: On protection system design for radial bipolar multi-terminal HVDC networks

Patrick Düllmann¹, Christina Brantl¹, Philipp Tünnerhoff², Philipp Ruffing², Albert Moser¹ 1: RWTH Aachen University, Aachen, Germany | 2: Amprion GmbH, Dortmund, Germany

Motivation: Integrate offshore wind

 Strong increase of offshore wind farms (OWFs) to be connected to existing AC grids via HVDC technology

Technological changes in HVDC connection systems:

- Sym. monopole → Bipole with DMR
- Point-to-point → multi-terminal networks (step-wise, radial DC-side interconnection)

Challenges and degrees of freedom:

- (De-)Coupling of P & N pole of bipole system
- **Protection** in case of **DC faults**: Limiting the temporary power loss towards the AC grid

Research gap and problem statement:

- Decisions made today will affect the future development of multi-terminal HVDC systems
- Variety of **DC protection strategies** proposed, but no operational experience in Europe
- No comprehensive DC fault study of bipolar multiterminal systems considering OWFs

Aim of this contribution

- Analyse the behaviour of bipolar offshore multiterminal HVDC systems under DC fault conditions
- Study the impact and interdependencies between operational concepts and DC protection
- Reveal challenges with regard to DC fault recovery

Investigation Framework

- HVDC: 2-GW bipolar, cabled HVDC links at 525 kV
 - Converter technology: half-bridge MMC
- Radial connection to a 4-terminal DC system
- Offshore: 66-kV string-based offshore windfarm with aggregated wind-turbines (fully converter coupled)
 - Frequency-sensitive control for curtailment
 - Different wind power infeed levels analysed
- Onshore: Continental European Grid (Thevenin)
 - Maximum allowed power loss: 3 GW

Methodology & Varied Parameters

1. Conceptual analysis

2. EMT simulations (type-4 MMC models, PSCAD[™])

Considered time frames / time horizons:

- Between fault inception & fault clearing (temporary)
- After fault clearing (inherent post-fault / recovery)
- After system reconfiguration (long-term state)

Varied impact factors

- Offshore AC side coupling between P and N pole (Disconnectors between offshore AC busbars of P and N pole are opened or closed)
- DC-side protection: Non-, partially, and fully selective (use of DC circuit breakers for the latter two)

http://www.cigre.org

av Economics

Study Committee B4

DC Systems and Power Electronics

Paper ID 11087

European offshore grid: On protection system design for radial bipolar multi-terminal HVDC networks

Patrick Düllmann¹, Christina Brantl¹, Philipp Tünnerhoff², Philipp Ruffing², Albert Moser¹ 1: RWTH Aachen University, Aachen, Germany | 2: Amprion GmbH, Dortmund, Germany

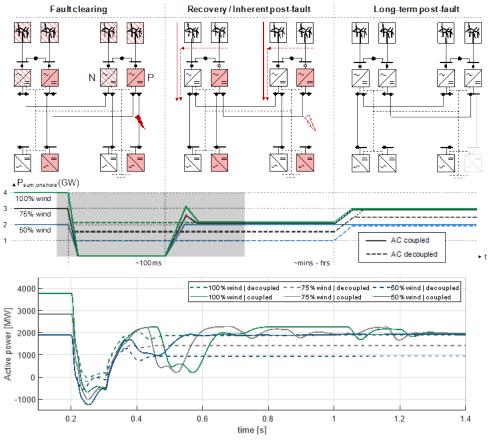
Bipole HVDC: Impact of pole coupling

Decoupled offshore AC busbars ("AC decoupled")

- Separated voltage control for P and N pole (U/f ctrl.)
- No interaction via offshore AC side in case of faults
- Reduced post-fault availability

Coupled offshore AC busbars ("AC coupled")

- Control challenge: "grid forming" with load sharing and fast wind power curtailment after DC faults
- DC fault leads to AC-side voltage sag / fault current → increased temporary power loss seen onshore
- > Higher (full) post-fault transmission capacity


Non-selective protection

Fault clearing and maximum onshore power loss

- Healthy DC pole remains in normal operation
- Maximum temporary power loss is larger than 3 GW
 - Coupled: up to 5 GW; decoupled: 4 GW
 - Additional power loss due to onshore AC fault current infeed trough blocked HB-MMC

Challenges during system recovery

- AC decoupled: No additional challenges
- AC coupled: Controlled wind power curtailment required → demand for robust control systems

http://www.cigre.org

Study Committee B4

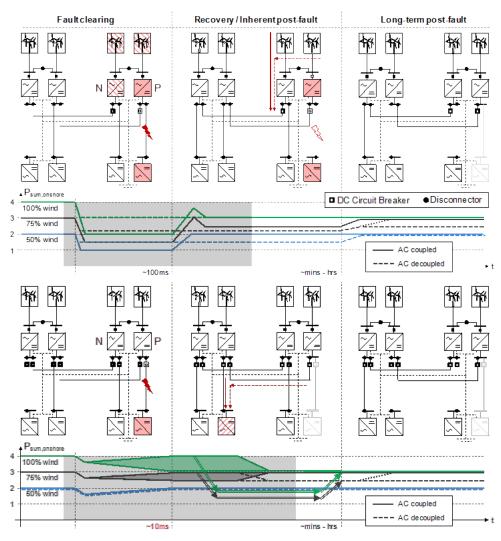
DC Systems and Power Electronics

Paper ID 11087

European offshore grid: On protection system design for radial bipolar multi-terminal HVDC networks

Patrick Düllmann¹, Christina Brantl¹, Philipp Tünnerhoff², Philipp Ruffing², Albert Moser¹ 1: RWTH Aachen University, Aachen, Germany | 2: Amprion GmbH, Dortmund, Germany

Partially selective protection (top)


Fault clearing, power loss, and system recovery

- Temporary power loss can be limited to < 3 GW
- Effect of AC pole coupling remains, but is reduced
- Challenges & impact of pole coupling equal non-sel.

Fully selective protection (bottom)

Fault clearing = recovery state (inherent recovery!)

- Temporary power loss can be limited to ca. 1 GW
- No effect of AC pole coupling on DC fault behaviour
- Risk of DC-side overload \rightarrow coordination needed

http://www.cigre.org