

HITACHI Inspire the Next

Hitachi Energy

B4 DC SYSTEMS & POWER ELECTRONICS

11089

Online Estimation of Dynamic Capacity of VSC-HVDC Systems -Proof of Concept in NordLink

Kevin SCHOENLEBER^{*,1}, Susanne SCHMITT¹, Robert JUHLIN¹, Rickard EKSTROM^{1,+}, Andreas WASSERRAB², Mark THIELE², Jens REIFSCHNEIDER², Marius LANGWASSER³, Marco LISERRE³

¹Hitachi Energy, Germany, ⁺Sweden ²TenneT TSO GmbH, Germany ³Kiel University, Germany

Figure 1: Power system use cases for dynamic capacity of VSC-HVDC systems.

Motivation

- Efficient use of equipment in transmission system is becoming increasingly important because delays in grid expansion projects can restrain the integration of renewables.
- Temporary increased utilization of the asset beyond guaranteed active and reactive power limitations is of great interest in modern power system operation (Fig. 1).
- Proof of concept investigates inherent temporary overload (dynamic capacity) for VSC-HVDC stations (Fig. 2)

Figure 2: Overview of VSC-HVDC station components and qualitative assessment of their dynamic capacity.

Method/Approach

- Field data from German NordLink HVDC Light converter station was used.
- Operational data has been utilized in combination with design knowledge for the development of the dynamic capacity system model.
- Dynamic capacity system model is compiled in a software prototype to which either historic (offline) data, forecast data or live data on premise can be fed
- Outputs could be visualized online at the site or offline

Objects of investigation&results

- German NordLink HVDC Light converter station was used for proof-of-concept
- Out of scope of this work have been the DC line and AC grid dynamic capacity. Also, for active power the other terminals' capabilities need to be respected.
- It is not planned to actually apply dynamic capacity at this link.
- Dynamic capacity of active power is estimated to be 14.0% and 26.9% higher than the guaranteed limit when considering full guaranteed reactive power range for two selected summer and winter days in 2021 (see further results on page 2).

Conclusion

- HVDC Light stations may possess dynamic capacity beyond their guaranteed limits
- Proof-of-concept is based on measurement data that has been collected from the German NordLink converter station since March 2021
- Main influencing factors are the outdoor ambient temperature and PCC voltage (for 30 to 90 min time duration)
- Concept for integration of dynamic capacity into the system operation process of the grid operator
- Potential of HVDC Light for curative congestion management is expected to be significant

HITACHI Inspire the Next

@Hitachi Energy

B4 DC SYSTEMS & POWER ELECTRONICS

11089

Online Estimation of Dynamic Capacity of VSC-HVDC Systems – Proof of Concept in NordLink

continued

Results: Input field data

- Data recorded since start of commercial operations in March 2021
- Software prototype was fed with historic field data from an arbitrary day in June 2021 (warm day), as well as October 2021 (cold day)
- Steady-state PCC voltage quite stable for both days, median around 407 kV (Figure 3)
- Outdoor ambient temperature << specified design value of 40°C. Warm day median 27.2°C, max 34.7 °C. Cold day median 13.3 °C, min 2.2 °C (Figure 4).

Results: Cold day case

- Active power dynamic capacity of the HVDC converter station available for a period of 60 minutes displayed in Fig. 6 for cold day
- Active power dynamic capacity is superior in the cold day case compared to the warm day case
- Dependency on ambient temperature is smaller for lower outdoor ambient temperatures

Results: Warm day case

- Active power dynamic capacity of the HVDC converter station available for a period of 60 minutes displayed in Fig. 5 for warm day
- Capacity is higher during colder night hours and lowers with the start of day (high temperature dependency)
- Utilizing less reactive power increases the active power potential

Main Results

- Daily outdoor ambient temperature variation has impact on dynamic capacity magnitude particularly in warm day case
- Available active power overload capability of 29.5% to 41.2% would be possible from the HVDC converter station (findings on Fig. 7+8)
- Full guaranteed reactive power requirement (Qmin and Qmax) would still provide a potential between 14.0% and 26.9% (findings on Fig. 7+8)

Figure 3: Boxplot PCC voltage variation for both cases.

Figure 4: Boxplot outdoor ambient temperature measurements.

Figure 6: Cold day case available 60 min active power dynamic capacity in p.u. in dependence of reactive power set-point.

Figure 5: Warm da ଅଟେଟ ଅଧିସାର୍ଶ୍ୱର୍ଥିକ ସେଥିବାରେ min active power dynamic capacity in p.u. in dependence of reactive power set-point.

http://www.cigre.org

HITACHI Inspire the Next

@Hitachi Energy

B4 DC SYSTEMS & POWER ELECTRONICS

11089

Online Estimation of Dynamic Capacity of VSC-HVDC Systems – Proof of Concept in NordLink

continued

System operation processes Preventive vs. Curative

- N-1 security is usually maintained in a preventive way (Fig. 9 a); preventive congestion management reduces loading of the affected transmission line in normal operation to not exceed permanent admissible transmission limits (PATL) in real N-1 case
- Curative congestion management allows higher loadings in normal operation (Fig. 9 b); thermal overloading of the transmission line is avoided if the loading is kept below the so-called temporary admissible transmission loading (TATL)

Figure 9: a) N-1 principle in preventive operation, b) N-1 in curative operation, c) dynamic capacity for curative operation.

Consideration of dynamic capacity for curative congestion management

- HVDC systems are very suitable for curative remedial actions because they can quickly adapt their set points.
- Dynamic capacity of an HVDC system means the curative potential can be increased; would reduce need for costly preventive remedial actions
- Dynamic Capacity of HVDC systems would cover 30 to 90 mins and then be substituted by other remedial actions (Fig. 10)

Operational planning	▶	R mi-thre operation			
 Is the allow of Dynamic separate law of an Inneae 1985. Resear the septimization (preserving law the) 	 Mant bring/ NI. A sum on all Fanal solid an all dynamics Repartly Gaussian Repartly Gaussian 	- Adia dian af wardin a sama diat a dian (Spramia wapati yaf WOC spiken)	 Substitution of Synamics aparely by semanizational remediatedians 	 Referction of H-1 security 	
• • • • • • • • • • • • • • • • • • •	•	0	0		
N-L management based	100 h			Alta and reg Hill	
on fo acast data				hading if, since	
		ha faran	fuerers.	land line	

Figure 10: Consideration of dynamic capacity in system operation processes.

Conclusion

- HVDC Light stations may possess dynamic capacity beyond their guaranteed limits
- Proof-of-concept is based on measurement data that has been collected from the German NordLink converter station since March 2021
- Dynamic capacity of active power is estimated to be 14.0% and 26.9% higher than the guaranteed limit when considering full guaranteed reactive power range
- Main influencing factors are the outdoor ambient temperature and PCC voltage (for 30 to 90 min time duration)
- Concept for integration of dynamic capacity into the system operation process of the grid operator
- Potential of HVDC Light for curative congestion management is expected to be significant

Further work

- Analysis and modelling of the lifetime impact of this feature would be of great interest to push technology readiness level (TRL)
- Dynamic performance studies to be conducted and potential deviations from guaranteed performance to be assessed and agreed upon between supplier/customer
- Authors would be open to engage with cable manufacturers on assessing the potential of dynamic capacity of HVDC cables and overhead lines

Acknowledgements

The authors gratefully acknowledge funding by the German Federal Ministry of Education and Research (BMBF) within the Kopernikus Project ENSURE 'New ENergy grid StructURes for the German Energiewende'.