

Study Committee B5

Protection & Automation

10120_2022

Wide Area Protection Scheme for Prevention of Islanding of South Australia

Douglas WILSON¹, Seán NORRIS¹, Devinda PERERA², Yang LIU², Leonardo TORELLI³ ¹GE Digital, UK; ²ElectraNet, Australia; ³CSE Uniserve, Australia

Trigger

Motivation

- South Australia has high penetration of renewables and inertia varies greatly
- Loss of synchronism to wider network (NEM) can result from many high impact / low probability events
- Conventional SIPS cannot address the wide range of possible sequences.
- Synchrophasor based WAPS is a generalized approach to apply regional fast balancing response to maintain synchronism.
- Novel approach successfully trialed, now being deployed.

Disturbance Detection

- Network Stress: Angle difference (Δδ), frequency difference (Δf), projected angle difference (Δδ + kΔf). Measure of stability.
- Power Imbalance: Level & change of power balance in SA (-P_{irrbal} + H_{SA}ROCOF_{SA}). Measure of region power balance change.
- System Event: F_{5A} & ROCOF_{5A} with external NEM event blocking. Fast detection in low inertia state.

Disturbance Response

- Level L1 BESS slower but more flexible than L2 Level L2 Load shed – faster, applied to critical events
- Response: Power Imbalance (-P_{imbal} + H_{SA}ROCOF_{SA}) minus Power Target. Proportionate to event and adapt to network state.
- Deployment: Dispatch to L1 & L2 resource blocks

WAPS Control Scheme

ess L1/Li

Study Committee B5

Protection & Automation

10120_2022

Wide Area Protection Scheme for Prevention of Islanding of South Australia

Douglas WILSON¹, Seán NORRIS¹, Devinda PERERA², Yang LIU², Leonardo TORELLI³ ¹GE Digital, UK; ²ElectraNet, Australia; ³CSE Uniserve, Australia

Experimental setup & results

- 279 Complex multi-event simulations used as case library to test and tune scheme
- Open-loop testing for trigger accuracy
- Subset of closed loop tests for response to control (A) manually inserted response (B) Control scheme in PSCAD control loop
- Network Stress most general for severe events, as the first criterion to trigger L2 in 66 cases, of which it is the only L2 trigger in 57 cases.
- System Event is an early trigger (lowest latency) for 39 cases at L1, all of which were followed by another.
- Power imbalance also an early trigger in 84 L1 cases
- All tests met required performance

Category	Target L1	Target L2	# T	ests	
Stable Credible	R	R	70	25%	R: Restrain
Stable Non Credible	м	R	101	36%	T: Trigger
Marginally Stable Non Credible	т	м	27	10%	
Marginally Unstable Non Credible	т	т	12	4.3%	
Unstable Non Credible	т	т	62	22%	
Other	Case-by-case		7	2.5%	

Statistics for FIRST/ONLY criterion to trigger at L1 or L2 level

Target Response		Power Imbalance		Network Stress		System Event	
L1	L2	L1	L2	L1	L2	L1	L2
Restrain	Restrain	0 0	0 0	0 0	0 0	0 0	0 0
May trigger	Restrain	20 19	0 0	2 2	0 0	4 0	0 0
Trigger	May trigger	20 13	2 2	2 1	6 6	6 0	10
Trigger	Trigger	44 0	10 0	5 1	60 51	29 0	6 0
TOTAL FIRST (ONLY) CRITERION		84 (32)	12 (2)	9 (4)	66 (57)	39 <mark>(0)</mark>	7 (0)

http://www.cigre.org

Study Committee B5

Protection & Automation

10120_2022

Wide Area Protection Scheme for Prevention of Islanding of South Australia

Douglas WILSON¹, Seán NORRIS¹, Devinda PERERA², Yang LIU², Leonardo TORELLI³ ¹GE Digital, UK; ²ElectraNet, Australia; ³CSE Uniserve, Australia

System Implementation

Conclusions

- WAPS scheme responds appropriately to all the multiple event sequences of disturbances tested addresses uncertainties with complex scenarios
- Synchrophasors enable fast-acting control sensitive to the dynamic state of the system the movement of the power system determines the need for response and volume
- Inherently adapts to changing conditions e.g. renewable generation share, system loading & network strength
- · Novel approach to triggering captures 3 distinct indicators of response: network stress, power deficit, frequency/ROCOF
- Novel proportionate response method applied for identifying power imbalance rapidly using P, H and ROCOF
- Further developments include embedding the control scheme into dynamic system model, directly as implemented in live system
- Adaptable approach to changes to topology, including strengthening of the interconnection to NEM

Further reading

Hong Q., et al.: "Design and Validation of a Wide Area Monitoring and Control System for Fast Frequency Response", IEEE trans Smart Grid, 2020
EC Horizon 2020 project MIGRATE "D2.3 Lessons Learned from Monitoring & Forecasting KPIs on Impact of PE penetration, <u>https://www.h2020-migrate.eu/</u> 25/09/18

[4] D. Wilson, B. Heimisson, R. Gudmansson, H-L. Cheng "Experience of fast-acting wide area control with geothermal governing to manage separation and island running", Cigre Paris Session, Aug 2020

[5] D. Wilson, et al, "icelandic Operational Experience of Synchrophasor-based Fast Frequency Response and Islanding Defence", Cigre Paris, 2018