

Study Committee B5

Protection and Automation

10154

Advantages of Full Digital Substations with Architecture Based

On Process Interface Units (PIU) Adriano Pires, Hector Leon, Leandro Pintos, Patrick Montaner, Chee-Pinp Teoh

GE Grid Solutions

Motivation

- Process Interfaces are the bridge in between the physical and digital worlds and are critical to enable all the advantages of a full digital substation solution.
- In this work we discuss the main Process Interface and architectures to implement them into boxes (single or multiple)

Process Level Interfaces and Applications

- Merging Unit (MU) or Stand-alone Merging Unit(SAMU): Dedicated to the conversion of voltages and currents into Sampled Values
- Non-Electric Interface Unit (NEIU): Dedicated to interface nonelectric sensors like gas or temperature transducers.
- Switchgear Interface Unit (SIU): Dedicated to interface with circuit switches and Circuit Breakers. It is usually associated to a remote I/O. SIU + NEIU is also called Switchgear Control Unit (SCU)



Fig 1. Generic modeling for Process Interface Devices SAMU, SIU and NEIU

Process Level Architectures: Organizing Logical Devices into Boxes

 It is considered that an IED is composed by a general infrastructure that is needed regardless the application (Comms, CPU, Power Supply) + specialized infra for specific applications

Fig 2. Diagram showing base infrastructure components for a physical device in a Digital Substation

Two basic configurations are explored for process level: **Multiple boxes** with two different IEds for **SAMU and SCU** applications; and a **Single box** approach with one IED for **SAMU + SCU** applications, which allows the convergence the base infrastructure.

Fig 3. PIU IED modelled with logical and physical components

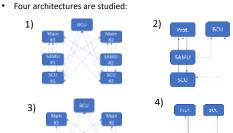


Fig 4. Process Level architectures: 1) Redundant SAMU + SCU; 2) Non-redundant SAMU + SCU; 3) Redundant PIU; 4) Non-redundant PIU

Comparison Study

 To compare the architecture against multiple criteria it were conceived hyphotetical IEDs.

RD Type	Cent (05)	MTSF (Years)	MITTE (Hears)	Availability
\$2,000	650	500	-46	0,089989
900	200	500		0,999989
nu	1000	500	46	0,989989

Tab 1. Hypothetical IED characteristics used for the comparison

	Redundent Architectures		Non-Redundant Architectures	
	Arch, 1	Arch. 3	Arch. 2	Arch. 4
	(2x SAMU + 2x SCU)	(2x PL0	(SAMU + SOJ)	(1x PHU)
Central Reliability	2 (99,9985%)	4 (99,9993%)	1 (89,9878%)	3 (99,995910)
Material Costs	1 (2700 05)	3 (2080 05)	2 (1300 OS)	4 (1000 66)
Commissioning	1	3	2	4
Operational Costs	1	3	1	4
Spare Management	1	3	1	4
Wender dependency	4	2	1	1
Peopprint	4	1.00	2	4
Complexity	1	3	2	4
Fiexibility	4	2	3	
Total	14	26	29	29

Tab 2. Comparison table with ranking of the architectures for each item analyzed

Conclusion

- SAMU + SCU based architecture have better results when analyzing vendor/product dependency and flexibility in overall
- PIU based architectures have higher score for the criteria: Reliability, Cost, maintainability, footprint and simplicity in overall
- PIU advantages are logical considering that each IED has a minimum basic structure, which does not increase linearly with the number of application this device will cover
- Not all criteria analyzed are quantitative and it is not possible to elect a "best option" for architecture. It depends on the needs and the technical and non-technical judgement in each case.
- Even with this uncertainty, PIU based architectures shows advantages for most of the criteria herein analyzed and points this type of architecture as a mean to simplify and reduce the total cost ownership for full digital substations.

http://www.cigre.org