

SIEMENS **TUDelft** Delft Delft Delft Delft Delft

Study Committee B5

Protection and Automation

10552 _2022

Testing and Analyzing of Distance Protection of a Realistic

Offshore Wind Farm Transmission System

Kasper de Korte¹, Gerwin van Dijk, Yilmaz Yelgin², Jose Chavez³ & Marjan Popov³ 1. Siemens Nederland N.V, 2. Siemens A.G., 3. Delft University of Technology

How does distance protection behave in an AC wind farm transmission system?

- Protection functions such as distance protection are commonly used in traditional transmission grids. However, are these functions suitable for transmission grids with 100% feed-in from RES?
- What are considerations for the determination of parameters for distance protection in an off-shore wind-farm?
- Classical distance protection is compared to an evolved distance protection method: Distance protection with reactance method (RMD)?
- Challenging grid properties such as:
 - Long cables with high capacitive values.
 - Offshore
 - Weather depended loading
 - DFIG wind turbines (type 3)

Simulation and testing of 874 dynamic cases

- Electromagnetic transient (EMT) simulations were combined with testing of real protection relays.
- 874 cases out of
 - 188 scenarios
 - 3 protection relay locations
 - o 2 distance protection methods
- Automated simulations of scenarios in DIgSILENT
 Powerfactory

Objects of investigation

- Performance testing of distance protection functions resulting in expected results or the following types of unexpected results:
 - **No trip** at a fault inside the zone. (missed trip);
 - **Trip** at a fault **outside the zone** (Unintended trip).

Partial simulation, partial real equipment testing.

- For each scenario, a dynamic EMT simulation is performed.
- Secondary CT/VT voltages and currents are extracted from the simulation.
- Voltages and currents are synthesized using a signal generator and fed into the protection relay.
- The unexpected results are analyzed with a self build tool in MATLAB

- 11% of the test cases had an unexpected result.
- Classic method: 5% of the tested cases resulted in an unintended trip.
- RMD method: 3% of the tested cases resulted in an unintended trip

Discussion

- Extreme cases are chosen.
- Maloperation at low energy production because of a lag of short-circuit current.
- The wind turbine behavior can cause fast changing impedance in combination with voltage angle jump which makes distance protection less reliable (Scenario A).

Conclusion

- A certain number of unexpected results for classic and RMD methods are comparable. However, RMD has a lower number of unintended trips
- Distance protection is an effective protection function. However, every protection function has its limitation.
- For more comprehensive protection it is recommended to use multiple protection functions in parallel. The selected distance protection method(s) must be fitted to the specific power system to be protected.

Study Committee B5

Protection and Automation

10552 2022

Testing and Analyzing of Distance Protection of a Realistic

Offshore Wind Farm Transmission System

Kasper de Korte¹, Gerwin van Dijk, Yilmaz Yelgin², Jose Chavez³ & Marjan Popov³ 1. Siemens Nederland N.V, 2. Siemens A.G., 3. Delft University of Technology

- **Scenario** A
- 3-Phase fault
- Arc-resistance = 1.7Ω

Protection relay at location RD3

Figure: Impedance trajectory with time points indicated for protection relay at location RD3 (left) and RD1 (right). Table: Time points described as indicated in impedance trajectory.

Designation	Time (ms)	Description
A	508	The impedance enters the zone. A pickup is received for the L_{A-G} , L_{B-G} , L_{C-G} fault loops
В	599	The pickup signal is retracted
С	1500	End of the simulated fault
Υ	644	A pickup signal is received
Y*	674	A trip signal is received for zone 1
7	1500	End of the simulated fault

Observations

- **Expected** cause
- Relatively slow changing impedance.
- Rotation of voltage angle.
- Short activation of wind turbine crowbar.
- Fault ride through control loop controls the reactive power of the wind turbine.
- Rotor current reaches the maximum current value

Consequence

(Hypothesis) The algorithm decides to use a pre-fault voltage angle which does not correspond to the real angle. This results in an incorrect interpretation of the impedance.

Delft Delft Delft University of Technology

Maximum short-circuit contribution per wind turbine generator will not be exceeded.

Conclusion scenario A

- The fault ride through control of the wind turbines may have an undesirable influence on the distance protection function behavior.
- Pre-fault voltage is not always suited to determine the impedance angle during a fault.

http://www.cigre.org

Study Committee B5

Protection and Automation

10552 _2022

Testing and Analyzing of Distance Protection of a Realistic

Offshore Wind Farm Transmission System

Kasper de Korte¹, Gerwin van Dijk, Yilmaz Yelgin², Jose Chavez³ & Marjan Popov 1. Siemens Nederland N.V, 2. Siemens A.G., 3. Delft University of Technology

Scenario B

- Two line to ground fault.
- Arc-resistance = 2.25 Ω.
- Wind turbine power = 10% of P_N .

relay location RD3.

Expected cause

- Voltage over arc-resistance can not be measured by the protection relay.
- Line-to-line impedance is found by the protection relay using:

$$\underline{Z}_{L_A-L_B} = \frac{\underline{U}_{L_A-G} - \underline{U}_{L_B-G} - \underline{R}_{P}\underline{I}}{\underline{I}_{L_A} - \underline{I}_{L_B}}$$

- The classic method does not subtract the Arc-voltage from the impedance calculation. This is suited for a fault scenario where the measured side's current contribution is lower or similar to the opposing side's.
- RMD method makes a more advanced estimation of the arc- resistance. And has therefore a better performance in this scenario.

· Unintended trip with the classic method.

expected.

Distance protection with the RMD method acts as

TUDelft Delft University of Technology

Small short-circuit Large short-circuit contribution from the contribution from the protection relay side. external grid side. Protection relay measurement v IL. <u>↓<u>Інм1</u> <u>Z</u>нм1</u> Ζсв 쓡 m To: External $\rightarrow \rightarrow \rightarrow \rightarrow$ To: wind grid turbines 4 Z₁ I <u>U</u>L-G <u>}</u>]s N \sim \rightarrow ZHM1_G ZCB_G Relatively high Transformer starpoint current trough current return path is and therefore a unseen by the protection high voltage over relay. the arc.

Conclusion scenario B

- Distance protection in the direction of a high short-circuit current contributor can distort the impedance calculation when a fault impedance is present.
- A transformer with a grounded starpoint in sight of the distance protection relay can distort the impedance calculation.
- Estimating the arc-impedance is therefore vital in the described scenarios