

Study Committee B5

Protection and Automation

Paper ID: 10622

Impact of low network inertia on system transient stability

Urban RUDEZ¹, Adrian KELLY², Koji YAMASHITA³, Yoav SHARON⁴, Ray ZHANG⁵ ¹University of Ljubijana, Faculty of Electrical Engineering, Slovenia ²Electric Power Research Institute (EPRI) international, Ireland ³University of California Riverside, California, USA ⁴S&C Electric Company, Chicago, Illinois, USA ⁵Arup, United Kingdom

Motivation

- CIGRE JWG B5/C4.61
- Impact of low inertia network on Protection and Control
- Check the transient stability analysis in networks with high penetration of converter interfaced generation (CIG)
- Expected impacts on critical clearance time (CCT)

Simulation models

• Single-Machine Infinite Bus (SMIB) model

Two-Machine model

IEEE 39-bus model

•

Calculations

- Static (equal-area criterion) in Matlab environment
- Dynamic (RMS simulations) in Matlab/Simulink environment

Decreased-inertia modelling

- Fictitious power system with five generating units
- Identical installed apparent power 100 MVA

$$S_{\rm EQ} = \sum_{i=1}^n S_{\rm r,i}$$

 $H_{\rm EQ} = \frac{\sum_{i=1}^{n} H_i \cdot S_{\rm r,i}}{S_{\rm EQ}}$

Two out of five generating units are replaced by CIG

1 2 3 4 5 Generating unit number

 $W_{\rm EO} = 1500 \,{\rm MW}$

 Decreased inertia of the remaining network was modelled by decreasing H_{FO} in seconds

http://www.cigre.org

0

Study Committee B5

Protection and Automation

Paper ID: 10622

Impact of low network inertia on system transient stability

Urban RUDEZ¹, Adrian KELLY², Koji YAMASHITA³, Yoav SHARON⁴, Ray ZHANG⁵ ¹University of Ljubljana, Faculty of Electrical Engineering, Slovenia ²Electric Power Research Institute (EPRI) international, Ireland ³University of California Riverside, California, USA ⁴S&C Electric Company, Chicago, Illinois, USA ⁵Arup, United Kingdom

Equal area criterion

Dynamic RMS simulations

Expectations

- CCT increases
- Critical angle remains the same (see contribution to special reporter question 1.05)

Angle G two-generator model CCI G_{EQ} SMIB CCT $\Delta \delta$,

Time

Infinite source

Model validation

a sub-transient model with excitation/governor

a sub-transient model without excitation/governor

voltage source behind a fixed impedance

Study Committee B5

Protection and Automation

Paper ID: 10622

Impact of low network inertia on system transient stability

Urban RUDEZ¹, Adrian KELLY², Koji YAMASHITA³, Yoav SHARON⁴, Ray ZHANG⁵ ¹University of Ljubljana, Faculty of Electrical Engineering, Slovenia ²Electric Power Research Institute (PRI) international, Ireland ³University of California Riverside, California, USA ⁴S&C Electric Company, Chicago, Illinois, USA ⁵Arup, United Kingdom

Results

- Variation of inertia in the remaining network
- Decrease in acceleration area
- Increase in deceleration area

Two-machine network

Conclusions

- Critical clearance times of synchronous machines are expected to increase with reduced network inertia
- This may be positive news since more time is given for protection relays to clear faults
- Longer clearance times may also lead to the frequency problem
- It is important to consider the existing levels of inertial masses in the electrical-power systems (effect may become saturated at high values of inertia)
- In contribution to special reporter question 1.05 the impact on distance relay blocking due to power swings is provided

IEEE 39-bus model

Local rotor angle - remote bus angle [degrees]

Network without CIG (CCT = 130 msec) Fault duration equals CCT

Network with CIG (CCT = 210 msec) Fault duration equals 130 msec

Network with CIG (CCT = 210 msec) Fault duration equals 210 msec