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Motivation
• Increasing uncertainty in short term operational parameters 

(e.g., wind speed variability, demand variability) 

• Uncertainty in more fundamental long-term changes (e.g., 
energy mix, availability of interconnectors)

• The dynamics of the system are more complex and unpredictable 
in certain parts of the network

• Long-term boundary capability assessment would need to be 
able to capture these uncertainties

• Current approach is deterministic and focuses on a selected few 
boundaries only and a single scenario is studied for each 
boundary

• A probabilistic approach is more suited to account for uncertain 
factors

• But high computational time in a Monte-Carlo simulation; limits 
the number of boundaries and scenarios that can be studied 
every year 

• Studying each boundary currently takes a significant time as it 
requires manual intervention; no opportunity to run the studies 
unattended on several machines in parallel

• Uncertainty of the wind output and the correlation between 
demand at grid supply points and wind output across different 
boundaries is difficult to model due to the high dimension of the 
problem
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Experimental setup
• Stability Tool Interface: A web browser-

based user interface with a visualisation 
platform 

• Stability Automation Tool: A python-
based tool to interface with 
powerfactory API and to  automate 
several analysis steps

• Stability Classification Tool: A machine 
learning model which allows for 
scanning of large number of scenarios 
without the need for any time domain 
simulations
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Objects of investigation
• Create an end-to-end stability analysis platform with a 

user interface 

• Develop an algorithm to automatically resolve non-
convergence issues with year-round scenarios

• Assess the suitability of using network reduction for 
dynamic equivalent in stability analysis 

• Identify ways of dispatching generators and demand in a 
reduced equivalent network

• Develop an algorithm to automatically identify stability 
of the system

• Explore different feature engineering techniques and 
binary classification methods 

• Develop a machine learning framework with appropriate 
data management system
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Conclusion
• A probabilistic analysis for stability constraints is realisable through 

a combination of different techniques such as automation of 
studies, network reduction and use of machine learning models  

• The stability problem can be solved as a binary classification 
problem and Random Forest is found to be the most effective 
classifier out of three with accuracy higher than 90%

• Active learning is a powerful concept, and it is useful to tackle high 
dimensional problems such as stability analysis of national 
transmission networks

• The developed tool can be used as a horizon screening method to 
quickly scan through a large volume of scenarios

A probabilistic approach to stability analysis for boundary transfer 
capability assessment

continued
Discussion
• The results presented in the paper are for the 36-zone 

reduced GB model 

• Since then, we have improved the framework to incorporate 
the ETYS model (official model developed by TOs and the 
ESO)

• The results from the ETYS model have higher accuracy due to 
the granular representation of network characteristics

• Several classifier types have been compared (SVC, RFC, GPC) 
along with different query strategies (uncertainty, entropy), 
feature selection and filtering methods

Classification model
• The implementation of the classification model involves several 

important steps such as data cleaning, feature engineering, 
hyperparameter tuning etc. 

• The performance of the model depends heavily on the quality of 
the training dataset and therefore a lot of effort is required here

Classification model accuracy
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Machine learning training results for the ETYS model
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Feature importance

Feature selection process
• More than 2000 features in the master dataset 

• Only most important features should be considered to avoid 
over-fitting and improve on the training time

Boundary 1

• Most often real systems will 
have imbalance of classes

• Class imbalance can lead to bias 
in the prediction of the model

• Results from 36-zone model and 
ETYS model show poor accuracy 
for the unstable class and 
boosting, sampling techniques 
do not help
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