

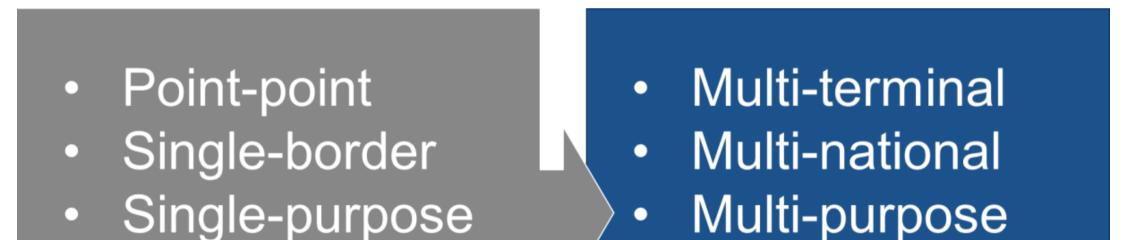




# **Study Committee C1**

**Power System Development and Economics** 

#### Paper 10351 2022


# **Compatibility & interoperability framework to facilitate the step**wise organic development of multi-terminal offshore HVDC grids

| Cornelis A. PLET | Christina BRANTL | Mian WANG       | Hannah EVANS | John N. MOORE | Ceciel T. NIEUWENHOUT | Alexandra. ARMENI | Maksym SEMENYUK |
|------------------|------------------|-----------------|--------------|---------------|-----------------------|-------------------|-----------------|
|                  |                  | Dirk VAN HERTEM |              |               |                       |                   |                 |
| DNV              | RWTH Aachen      | KU Leuven       | CarbonTrust  | Whitethorn    | RU Groningen          | TenneT            | DNV             |
| Canada           | Germany          | Belgium         | UK           |               | Netherlands           | Germany           | Netherlands     |

### Motivation

•HVDC grids will play key role in achieving energy transition •The HVDC grid of the future cannot be planned today. Multiterminal readiness requires increased forward planning. Further development will be in step-wise organic fashion, adapting to an evolving transmission need

•Today's HVDC links are typically not planned, designed and procured with future extendibility in mind, resulting in systems that are often incompatible and not interoperable •Standardization of technical characteristics and alignment of power markets and system planning is required to enable coordinated planning of HVDC projects to achieve the socioeconomic benefit



 $\bullet$ 

### Approach

•A framework of seven levels of compatibility and interoperability between power markets, HVDC projects, HVDC systems and HVDC components was developed. Each level is characterized by several aspects which are common to projects on different sides of a jurisdictional border

•For each identified commonality, the progress made within North-West Europe was assessed through a comprehensive survey of technical literature, policy documents, and press releases

•The status of each commonality is reported using a traffic light indicator

#### Conclusion

•It is not realistic to create a 'blueprint' for the HVDC grid of

- Single-purpose
- Single-owner
- Single-vendor

Multi-actor • Multi-vendor

#### Goal

•Determine the status of a minimum set of regulatory agreements, functional requirements, technical parameters and project aspects...

...that need to be planned, agreed, coordinated, harmonized and/or standardized...

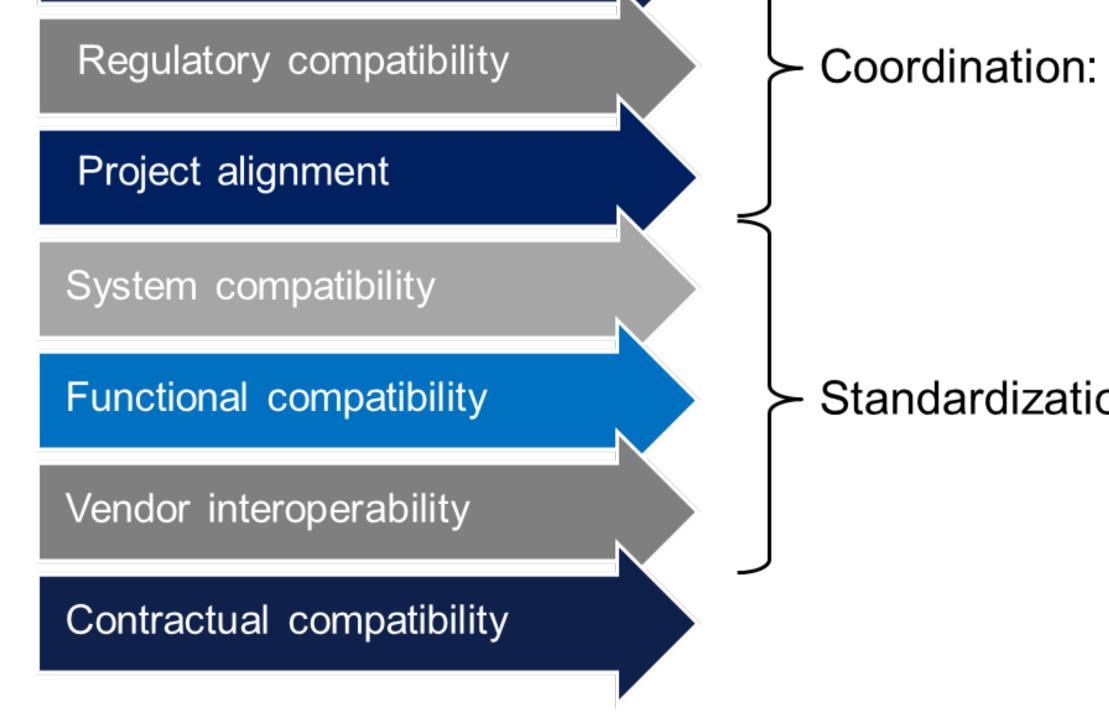
...to enable expandability, compatibility and interoperability of HVDC equipment & systems...

...to allow step-wise organic development...

...of multi-purpose, cross-border, multi-owner, multi-vendor, multi-terminal HVDC grids.

#### the future, albeit a strong vision may facilitate broader economic benefit

•HVDC grids will develop in step-wise organic fashion, adapting to an evolving transmission need


•A paradigm change is needed in the way HVDC systems are planned, specified, procured, and operated to ensure individual HVDC links are expandable, compatible and interoperable and avoid undue (potential) expense

•This requires extensive collaboration, coordination and standardization of project commonalities

•Significant progress is made in Europe, but is slow, seemingly uncoordinated and as yet still insufficient to realize shared HVDC grids.

•Implement a structured approach towards achieving the required coordination and standardisation through open communication, binding multi-lateral agreements, technical standardisation and pilot projects

#### Political agreement



Unlock project synergies and realize societal benefits

Standardization: Enable technical compatibility





Level

Aspect





Status

# Study Committee C1

Power System Development and Economics

### Paper 10351\_2022

# **Compatibility & interoperability framework to facilitate the step**wise organic development of multi-terminal offshore HVDC grids (continued)

| dination | Political<br>agreement      | Set ambitious international and national carbon reduction targets           |  |
|----------|-----------------------------|-----------------------------------------------------------------------------|--|
|          |                             | Cooperation in or coordination of national energy plans                     |  |
|          |                             | Agreement on regional resource adequacy and security of supply              |  |
|          |                             | Common CBCA method across a region                                          |  |
|          |                             | Comprehensive consultation process to mitigate environmental & social risks |  |
|          | Regulatory<br>compatibility | Develop frameworks for regional cooperation and shorter term legislation    |  |
|          |                             | for current projects                                                        |  |
|          |                             | Create a strong regional regulator and regional coordination centres (RCCs) |  |
|          |                             | with legal responsibility for grid operation tasks                          |  |
|          |                             | A coordinated maritime spatial planning & permitting framework              |  |
|          |                             | Clear framework for network asset ownership                                 |  |
|          |                             | Market models, Hybrid / multi-purpose assets                                |  |
|          |                             | Anticipatory investments (and remuneration of these)                        |  |
|          |                             | System operation guidelines (SOGL)                                          |  |
|          |                             | System balancing and ancillary services                                     |  |
|          |                             | Market models and support schemes                                           |  |
|          |                             | Decommissioning of grid assets                                              |  |
|          | Project<br>alignment        | Develop long-term planning framework which considers both generation and    |  |
|          |                             | transmission onshore and offshore                                           |  |
|          |                             | Invest in supply chain                                                      |  |
|          |                             | Expandability: Spare bay and space                                          |  |
|          |                             | Rated operating voltages                                                    |  |
|          | System<br>compatibility     | Converter technology                                                        |  |
|          |                             | Converter configuration                                                     |  |
|          |                             | System earthing                                                             |  |
|          | Functional compatibility    | AC side control                                                             |  |
|          |                             | DC side control                                                             |  |
| uo       |                             | DC side protection                                                          |  |
| ati      |                             | Coordination with and between OWFs                                          |  |
| rdis     | Vendor<br>interoperability  | Communication interface                                                     |  |
| dar      |                             | DC Control Stability                                                        |  |
| Stand    |                             | Mechanical interface                                                        |  |
|          | Contractual compatibility   | Procurement strategy                                                        |  |
|          |                             | Common terminology & definitions                                            |  |
|          |                             | Completeness of requirements                                                |  |
|          |                             | System integration responsibility                                           |  |
|          |                             | Warrantees, Liabilities & Conflict resolution                               |  |
|          |                             | Exchange of information                                                     |  |
|          |                             | Technology qualification, testing & facilities                              |  |

http://www.cigre.org