http://www.cigre.org

Optimising Italian Electricity and Gas Sectors Coupling

in a 2030 Decarbonized Energy System

Giovanni Micheli (a), Maria Teresa Vespucci (a), Maria Gaeta (b), Fabio Lanati (b), Dario Siface (b), Laura Tagliabue (b)

(a) Università degli Studi di Bergamo, Italy; (b) RSE S.p.A., Italy

Motivation

- Future low-carbon energy systems will be based on large shares of non-programmable renewable energies with frequent periods of over/under generation \rightarrow it is crucial to boost power system flexibility.
- In general, power system models consider "traditional" flexibility sources: supply-side and demand-side options, grid reinforcements, e-storage systems, electrolysers for hydrogen production.
- Power-to-Gas (PtG) technologies represent a rather new flexibility option that increases the

interconnection between electricity and gas systems \rightarrow we developed a new simulation tool to explicitly consider a potential bidirectional energy conversion (power-to-hydrogen, hydrogen-to-gas, and gas-topower for zero-carbon energy systems).

Method

Paper 10784_2022

Table 1 - Overview of the new integrated model

Figure 1 - Main inputs and outputs of the new integrated model

(*) Simplified representation of the reserve: minimum load to be provided by dispatchable generation units (gas power plants, hydro-dams, e_storages)

Study Committee C1

Power System Development and Economics

http://www.cigre.org

Case study set-up

- A long-term scenario analysis has been carried out with the TIMES_RSE model for the Italian energy system for the period 2018-2050.
- Results and constraints for the year 2030 were used as inputs for the new integrated model to carry out a 1-hour time step analysis. 2 scenario-variants have been assessed.

Scenario definition:

• *Central scenario*: developed from the National Energy and Climate Plan imposing the following changes: i) downward revision for national GDP and population projections; ii) increased climate ambition (-51% of GHG emissions by 2030 to reflect the EU Green Deal); iii) lower CAPEX projections for electrolysers (hp. large-scale manufacturing by 2030).

- *VAR 1 scenario*: 5 TWh of PV production added to replace the use of biomethane in the power sector.
- *VAR 2 scenario*: exogenous demand of 4.2 TWh of synthetic biomethane (see *Table 2*) and 5 TWh of additional PV production (vs the Central scenario).

Optimising Italian Electricity and Gas Sectors Coupling in a 2030 Decarbonized Energy System

Hydrogen sector:

- The national H₂ demand in final energy sectors (\approx 5.8 TWh) is distributed between the six power market zones based on the preliminary projects mentioned in the National Recovery and Resilience Plan (*Table 2*).
- \cdot H₂ is assumed to be generated where it is consumed, therefore the electrolysis capacity (7 GW $_{el}$) is allocated proportionally to the zonal H₂ demand (*Figure 3*).
- \bullet H₂ demand is assumed to have a flat hourly profile.

- \bullet H₂ can be stored in short-term H₂ storage plants.
- \bullet H₂ can be produced only by electrolysis, but electrolysers can use electricity from any sources \rightarrow need to identify the actual green H_2 production. Assumptions:
	- H₂ is always green when overgeneration occurs
- Electricity production from RES + e_storage discharge + net import (A) is directed to cover *first* residual load + e_storage charge + net export (B). It is t is possible to have green H_2 only when A > B.
- H_2 is accounted as green when electrolysers consume electricity from gas-fired power plants & the reserve availability is equal to the minimum requirement (i.e. when gas power plants cannot be turned down due to the zonal reserve constraints).

Figure 2 - Electricity mix by source

Paper 10784_2022

Study Committee C1

Power System Development and Economics

http://www.cigre.org

Case study results

Optimising Italian Electricity and Gas Sectors Coupling in a 2030 Decarbonized Energy System

Table 3 - Main results for the power and hydrogen sectors

- The new model was tested by assessing a 2030 scenario for the Italian energy system that shows a strong development of PV and wind and the first H₂ applications in end-use sectors. Two scenario variants were assessed to evaluate a higher PV penetration (VAR 1), and an exogenous demand of synthetic biomethane (VAR 2).
- Sensitivity analysis is necessary to minimize the share of non-renewable H_2 (made with electricity coming from thermal power plants). Crucial parameters are electrolysis capacities, H_2 storage capacities, and hourly H_2 demand profiles.
- Possible model developments to address the limitation of the tool are:
	- additional technical constraints in the power sector, e.g. explicit representation of 1st, 2nd, 3rd reserve power;
	- additional sector coupling options, such as H_2 blending, Power-to-Heat and Power-to-Liquids;
	- description of the full H_2 supply chain with different transport technologies.

() ND = North; CN = Center-North; CS = Center-South; SU = South; SA = Sardinia; SC = Sicily.*

Conclusion

• We developed a new simulation tool to jointly optimize the dispatch of electricity and gas sectors with a potentially bidirectional energy conversion, with an explicit modelling of both electricity and gas storage systems, and an hourly definition of both

electricity and gas prices.

Discussion

- Electrolysers have higher capacity factors in the VAR2 case (extra H₂ demand for the methanation, but identical PtH₂ capacity). In VAR 1 and VAR 2 scenarios, power generation from gas power plants is higher than expected because of additional overgenerations and e_storage losses (the share of PV and wind is already high, and it is difficult to integrate additional PV).
- In VAR1, we assumed 5 TWh of extra PV supply in the North, so there are less congestions on the line flows CN \rightarrow ND. In VAR2, most of the synthetic methane demand is in the North, therefore congestions on the line CN \rightarrow ND rise again.
- The quota of green H₂ is 52%-70%. Higher shares could be obtained by increasing the H₂ storage capacity and assuming more flexible H_2 demand profiles.

Table 4 - Congestions on the transmission grid in 2030: % of hours with delta electricity price between linked zones ()*

Study Committee C1

Power System Development and Economics

Paper 10784_2022