

Study Committee C2

Power System Operation and Control

10230_2022

A KDE-based Methodology for PMU Data Management and Real-time Event Detection

summary

Yidan Lu, Yuan Kong and Feng Tu American Electric Power

Motivation

- Increase in renewable penetration has contributed to more frequent system oscillations.
- PMU enabled real-time monitoring overwhelms operators with a massive amount of data.
- A methodology to differentiate vigorous and prolonged oscillations from common grid dynamics is necessary for maintaining situational awareness.

Methodology

- Recording-Vendor-supplied PMU application used to capture real-time oscillatory dynamics
- Estimation-Kernel Density Estimation (KDE) applied to depict bi-variate probability density function with regard to oscillation amplitude and decay time.
- Refining-Maximum Likelihood Cross Validation (MLCV) adopted to refine estimation of density function.
- Training-Heuristic training with input of historical event data deployed to customize cut-off probability for each PMU stream
- Visualization-Outlying observation picked by cut-off probability and highlighted on scatter plots
- Configuration-Individualize oscillatory alarm settings
 based on scatter plots

Implementation

- Data Extraction-over five million observations extracted for each of the 289 PMU signals.
- Data Processing-cross validated KDE applied to baseline each signal and locate outliers that are observations of harmful oscillations.
- Setting Configuration-Alarm setting customized for each PMU signal.
- Validation-Proposed methodology compared with empirical-based oscillation detection in offline event re-identification and real-time event detection.
- Deployment-Proposed methodology replaces empirical-based oscillation detection in facilitating multiple control room functions

Demonstration

Historical Event Re-identification in Texas
 Valley Area

Methodology	Event Total	False Alarm
KDE	28	0
Empirical	29	16

 Real-time Event Detection in ERCOT and SPP

Region	Method	Time	Event Total	False Alarm %
ERCOT	KDE	3 Mo.	49	6%
ERCOT	Empirical	3 Mo.	60	48%
SPP	KDE	1 Mo.	15	0%
SPP	Empirical	1 Mo.	10	50%

Deployment

Despite system updates, the KDE-based event detection remains robust

Area	Since	False Alarm %		Critical	
		after	before	Missed	
ERCOT	07/20	≈6%	50%	0	
SPP	09/20	<5%	45%- 50%	0	
PJM	10/20	<5%	50%	0	

CONTRIDUTIONS Innovation of a KDE-based methodology to accurately

- Innovation of a KDE-based methodology to accurately baseline PMU signals and initialize alarm settings.
- Establishment of a real-time event detection mechanism that has demonstrated system-wide adaptability, enhanced sensitivity, and long-term reliability.
- Development of a generalized approach to enhance situational awareness and control room preparedness against increasing renewable penetrations

Study Committee C2

Power System Operation and Control

Paper 10230 2022

A KDE-based Methodology for PMU Data Management and **Real-time Event Detection**

Details

AEP operates in 11 states constituting parts of ERCOT, SPP and PJM's

footprints.

AEP has deployed more than 450 PMUs across three footprints

The PMUs have been used in real-time detection and offline analysis of oscillation events.

Gaussian Kernel Density Estimation

Heuristical Training

PO is the cut-off probability, it decides how many observations are picked as outliers, thus observations of critical oscillations.

selected observations

AEP's PMU Configuration EMS (PJM) PIM SPP (PJM) RTO RTO PMU EMS (SPP) (SPP) PMU EMS (ERCOT) (FRCOT) PMU FMS Estimator RTO PD(Phasor Point decouples real-time oscillatory data and

feeds them to control rooms.

Million of historical data points stored during past 3 years of operations; events triggered by empirical stored

Distribution Function Estimated

Visualizing Outliers

Each dot represents an observation. Observations occurred within 5 min are considered to represent the same event. http://www.cigre.org

Study Committee C2

Power System Operation and Control

Paper 10230_2022

A KDE-based Methodology for PMU Data Management and Real-time Event Detection

Details Continued

Event Detection Enhancement Reliability

		AMPLITOPL	DICAI	ALAINIVI
2-23-20	3.5 MIN	1.75 MW	66 Sec	No
2-25-20	3 MIN	2.95 MW	34 Sec	No
3-09-20	50 SEC	3.25 MW	24 Sec	No
3-12-20	5 MIN	2.56 MW	40 Sec	No
3-13-20	4.5 MIN	2.05 MW	42 SEC	No
3-15-20	15 Sec	3.12 MW	21 Sec	No
3-30-20	3 MIN	1.66 MW	75 Sec	No
	2-23-20 2-25-20 3-09-20 3-12-20 3-13-20 3-15-20 3-30-20	2-23-20 3.5 MIN 2-25-20 3 MIN 3-09-20 50 SEC 3-12-20 5 MIN 3-13-20 4.5 MIN 3-15-20 15 SEC 3-30-20 3 MIN	2-23-20 3.5 MIN 1.75 MW 2-25-20 3 MIN 2.95 MW 3-09-20 50 SEC 3.25 MW 3-12-20 5 MIN 2.56 MW 3-13-20 4.5 MIN 2.05 MW 3-15-20 15 SEC 3.12 MW 3-30-20 3 MIN 1.66 MW	2-23-20 3.5 MIN 1.75 MW 66 SEC 2-25-20 3 MIN 2.95 MW 34 SEC 3-09-20 50 SEC 3.25 MW 24 SEC 3-12-20 5 MIN 2.56 MW 40 SEC 3-13-20 4.5 MIN 2.05 MW 42 SEC 3-15-20 15 SEC 3.12 MW 21 SEC 3-30-20 3 MIN 1.66 MW 75 SEC

Deployment

Event Detection Enhancement-Sensitivity

The KDE-based methodology baselines each PMU signal and individualizes their oscillation alarms As a result, alarms are revised more accurately, flagging

Event Detection Enhancement Summary

Historical Event Re-identification-most eventful PMUs					
PMU#	Empirical Alarm		KDE Alarm		True event by
	True	False	True	False	KDE-only
10042	2	1	6	0	4
11015	4	7	7	0	3
11025	2	0	3	0	1
10059	5	6	7	0	2
10040	2	2	5	0	3
	_				

Real-time Event Detection-with tri-weekly EMS update

Area	Method	Time	False Event	Event Total	Rate %
ERCOT	KDE	3Mo.	3	49	6%
ERCOT	Empirical	3Mo.	29	60	48%
SPP	KDE	1Mo.	0	15	0%
SPP	Empirical	1Mo.	5	10	50%

Conclusion and Future Work

- The KDE-based methodology enhances sensitivity and reliability of real-time oscillation event detection
- The proposed methodology demonstrated robustness despite constant EMS database update.
- Long term grid development plan will be carried out based on event information collected by the KDEbased scheme. http://www.cigre.org