

Study Committee C2

Power System Operation and Control

Paper C2-10550

Synchrophasor-based Applications to Enhance Electrical System Performance in the Netherlands

M. Popov¹, N. Kumar¹, A. Boričić¹, M. Naglić⁶, I. Tyuryukanov¹, M. Tealane¹, J. Rueda¹, A. Jongepier², E. Wierenga², M. van Riet³, O. Baglaybter⁴, G. Rietveld⁵, J. Bos⁶, M. van der Meijden⁶, D. Klaar⁶, P. Palensky¹

1. Delft University of Technology, Faculty of EEMCS, Delft, the Netherlands; 2. Stedin, the Netherlands; 3. Qirion, the Netherlands; 4. General Electric, UK; 5. VSL & University of Twente, the Netherlands; 6. Tennet TSO, the Netherlands;

Concept of a Distributed Digital Data Platform and Applications

- WAMPAC (Wide-Area Monitoring, Protection, And Control) is one of the most promising enabling technologies to tackle the challenges that modern power systems are facing.
- The developed platform can simulate power system and telecommunication phenomena in real-time and process the measurement data of user-defined applications.
- The platform can be used to test advanced WAMPAC algorithms under realistic conditions.

Figure 2. WAMPAC-ready cyber-physical platform for online validation of closed-loop applications

Figure 3. Digital platform for online data collection and processing in user-defined applications

http://www.cigre.org

Study Committee C2

Power System Operation and Control

Paper C2-10550

Synchrophasor-based Applications to Enhance Electrical System Performance in the Netherlands

M. Popov¹, N. Kumar¹, A. Boričić¹, M. Naglić⁶, I. Tyuryukanov¹, M. Tealane¹, J. Rueda¹, A. Jongepier², E. Wierenga², M. van Riet³, O. Baglaybter⁴, G. Rietveld⁵, J. Bos⁶, M. van der Meijden⁶, D. Klaar⁶, P. Palensky¹

1. Delft University of Technology, Faculty of EEMCS, Delft, the Netherlands; 2. Stedin, the Netherlands; 3. Qirion, the Netherlands; 4. General Electric, UK; 5. VSL & University of Twente, the Netherlands; 6. Tennet TSO, the Netherlands;

Stability-Aware Controlled System Separation

- Modern interconnected power systems operate under increasing pressure, which leads to an increased rate of severe events and blackouts in recent years.
- Controlled system separation aims to counteract the cascading chain of events by early detection of instability while minimizing the loss of load and equipment overloads.
- Three main questions: (i) when to split, (ii) where to split, (iii) what to do after splitting.
- The developed WAMPAC algorithms tackle these questions successfully, delivering excellent performance and the ability to improve system stability under critical conditions.

http://www.cigre.org

Study Committee C2

Power System Operation and Control

Paper C2-10550

Synchrophasor-based Applications to Enhance Electrical System Performance in the Netherlands

M. Popov¹, N. Kumar¹, A. Boričić¹, M. Naglić⁶, I. Tyuryukanov¹, M. Tealane¹, J. Rueda¹, A. Jongepier², E. Wierenga², M. van Riet³, O. Baglaybter⁴, G. Rietveld⁵, J. Bos⁶, M. van der Meijden⁶, D. Klaar⁶, P. Palensky¹

1. Delft University of Technology, Faculty of EEMCS, Delft, the Netherlands; 2. Stedin, the Netherlands; 3. Qirion, the Netherlands; 4. General Electric, UK; 5. VSL & University of Twente, the Netherlands; 6. Tennet TSO, the Netherlands;

Event Detection, Localization and Classification

- A possible futuristic capability of the WAMPAC platform is to achieve a high degree of situational awareness real-time detection, localization, and classification of disturbances.
- An incremental deep learning classification algorithm is developed, with good performance.

Figure 8. An expert system comprising Real-time disturbance event detection, classification and localization

Figure 10. (a) Disturbance Events after pre-processing. (b) Incremental Learning accuracy after classification

Power Systems Vulnerability Analysis

- Vulnerability is a risk level with respect to the occurrence of cascading events. With the decrease (increase) of synchronous (inverter-based) generation, this risk level notably rises.
- By monitoring and quantifying system strength and ADN-impact, dangerous grid states can be detected in real-time, providing the opportunity for preventive WAMPAC measures.

Figure 12. Exemplified impact of Active Distribution Networks (ADN) on the post-fault resilience

http://www.cigre.org