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Motivation
§ Blackouts are unpredictable, growing in 

numbers and costly.

§ Faster power system dynamics require 
faster tools.

§ Dynamic simulations are slow and 
complex.

§ Machine learning can predict the 
blackout risk using only power flow 
results. 

Experimental setup 
4955 samples are generated with multiple RMS simulations by varying fault location and duration in IEEE 9 bus test system.   
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§ Scenario and data generation
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Discussion & Conclusion
• Machine learning models enable us to predict the risk of the operational conditions fast, accurately, and robustly.

• Decision support tool for system operators to improve and monitor the security of the operation.

• Classification thresholds can be adjusted based on system operator needs.

• Tree-based models have lower prediction capabilities and are not suitable for our complex, nonlinear problem.

• SVM and ANN models outperformed other estimators in both regression and classification models.

• SVM and ANN classifiers’ mismatches lie around the decision boundaries since operating conditions are similar.

• Performance is directly linked with the quality of the training data. Major changes in the system or multiple topological changes 
require system operators to generate new training data with simulations.

• Although machine learning models are easily scalable, running a large amount of RMS simulations is challenging and if the 
dynamic system model is not available then risk estimator cannot be implemented.

Results

Accuracy
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