

redeia

C2

Power system operation and control

10913_2022

Transient Stability Enhancement through the control of embedded HVDC transmission systems. Grid2030 RITSE project

Juan Carlos GONZALEZ-TORRES^{*1}, Louis FILLIOT^{*1}, Abdelkrim BENCHAIB¹, Hind BEKKOURI¹, Antoine GHYSELINCK¹, Antonio CORDON², Luis CORONADO², Sergio MARTINEZ²

¹ Supergrid Institute, France

² Red Eléctrica de España, Spain

Motivation

- The necessity to reinforce the electric transmission system is evident, and **HVDC** technology has proven to be a key element to achieve such upgrading in a secure manner
- ENTSO-E recognizes that HVDC systems must be used for more than power transmission purposes, i.e., to provide services or "advanced functionalities"
- Our aim: To propose supplementary controllers via which the embedded HVDC links can enhance the electro-mechanical stability of the surrounding AC grid. To test the proposed controllers on the INELFE HVDC link in simulation using a modified version of the ENTSO-E Initial Dynamic Model. Validate the control implementability in relevant industrial configurations (hardware-in-the-loop environment).

The Reduced Inertia Transient Stability (RITSE) Project

<u>Collaborating with the transmission industry to reproduce their challenges and propose solutions</u>

- Provide a generic solutions (Not only applicable to the FR-SP interconnection)
- Reduce the complexity of the system so component detail can be augmented (from RMS to EMT simulations)
- Avoid confidentiality issues on TSOs grid data

Project objective

 To propose solutions of HVDC supplementary controllers for enhancing the transient stability of the surrounding AC grid. The proposition must be compatible with existing supplementary controllers

http://www.cigre.org

- This paper presents a complete control scheme that modulates the active power references of an embedded HVDC link to support the rotor angle stability of the system.
- Four complementary actions are combined: the Angle Difference Control (for power flow dispatch), the Power Oscillation Damping (for small-signal stability), the Triggered Power Compensation and the Frequency-difference-activated Action (both for decreasing power swings in surrounding lines).
- The benefits of the control were shown on the France-Spain interconnection, using the INELFE HVDC link in simulation of the modified ENTSO-E Initial Dynamic Model.
- The implementability of the controller on relevant industrial environments has been validated using two different setups.

http://www.cigre.org