

Study Committee C2

System Operation and Control

10954_2022

Technical, Regulatory, and Economic Development for Distributed Flexible AC Transmission Systems – DFACTS

Jorge Wilson GONZALEZ SANCHEZ* ⁽¹⁾, Mario PATINO ⁽²⁾, Daniela Maria OSORIO MORENO ⁽¹⁾, Julian David RIOS ⁽³⁾, Marco RUIZ ⁽⁴⁾, Brayan Alexander AGUDELO MESA ⁽¹⁾, Alejandro VIANA AYALA ⁽⁵⁾

Universidad Pontificia Bolivariana (1), Smart Wires Inc. (2), Empresa Públicas de Medellín (3), XM E.S.P (4) HMV ingenieros Ltda (5)

Colombia

Context

- **Power Systems challenged** due to non-conventional renewable distributed generation:
 - Intermittence
 - Planning uncertainty
 - Deregulation of the Energy markets
 - Operation closer to safety limits
- Increased congestion in Tx and Dx grids risking reliability and increasing electricity prices
- Traditional Tx projects are slow and with more and new challenges (legal litigation, environmental permits, impact on communities)
- Need for **flexible**, **intelligent** and **economic solutions** for better navigating the planning uncertainty.

DFACTS solutions (M-SSSC)

- Modular Static Synchronous Series Compensator as power flow control technology. Also referred to as DFACTS, due to its modularity and distributed operating concept.
- Devices are based on VSC converters (IGBT fullbridge topology)
- Technology actively varies the reactance of transmission lines in capacitive and inductive rages to push or pull power to optimize grid utilization.
- Quickly and economically use the existing grid capacity

riation DFACTS Solution (2) E

(2) DFACTS installation in Medellín, Colombia

Operation

- Convert existing transmission lines into Smart Assets capable of monitoring and actively controlling power flows (Dispatchable lines)
- Modularity of the design allows for relocating if grid needs change
- Flexible and least-regret investment, that helps:
 - Accelerate RES interconnection
 - Increase inter-regional transfers
 - Manage planning uncertainty
 - Reduce Energy costs
 - Avoid or defer complex infrastructure projects
 - Extend outage windows

Cost/Benefit Analysis

- Tool to evaluate and compare different technical alternatives to solve congestion issues
- Costs (ToTex) of following alternatives are assessed
 - HTLS reconductoring projects
 - Traditional reconductoring
 - · Building new transmission lines
 - Expansion and reconfiguration of substations
 - Phase Shifting Transformers
 - Conventional FACTS
 - Distributed FACTS (DFACTS)
- Benefits include, but are not limited to:
 - Decreased in unserved demand
 - Reduction in curtailment
 - Reduction in losses
 - Energy not supplied
 - Re-dispatch costs
 - Project Lead Times

Technical, Regulatory, and Economic Development for Distributed Flexible AC Transmission Systems – DFACTS

Extended DFACTS benefits

Monetizable and non-monetizable

- Reduced footprint & simple maintenance
- Installation and operational flexibility
- Standard and modular design (faster lead times)
- Redeployable and scalable to adapt to evolving grid needs
- Distributed reliability

Example 1: Ancillary Services

- Peak wind generation at different times
- Limited transport capacity and social difficulties for traditional expansion projects
- DFACTS provide dynamic real-time congestion management
- Dispatch automatism based on measured wind speed
- Solution minimizes curtailment and utilize the existing Tx assets

(3) DFACTS solution in Australia

- CBA for similar use cases can be based on investment remuneration via tariff.
- DFACTS proposed as **complementary non-market** equipment to mitigate curtailment, e.g.:

	Remuneration	Payment generator	
F/Regulation	"Causer pays" method	Pooling factor and residual by market customers	
Contingency	Recovered as a function of energy demand/generation	Generators pay upstream service, consumers pay downstream service	
Reactive Power	Based on consumption, in benefited regions	Market customers only	
Load sharing	Based on consumption, in benefited regions	Market customers only	
System restart	Based on energy demand/generation, in benefited regions	Payment is generated by consumers and generators	

Example 2: Cost Relation

- Speed of Installation from decision making point greatly impact CBA results.
- Political opposition, permits and approvals are delaying Tx projects and leading to reliability risks
- DFACTS "bridge solutions" as a cost-effective manner to solve short-term problems. Complementary and synergistic with longer-term bets
- If grid needs evolve with time, modularity allows for escalation of the initial deployment, or easy relocation

Year	Values in p.u.				
	DFACTS		Alternative		
	Costs	Benefits	Costs	Benefits	
2020	0	0	- 0.25	0	
2021	-1	0	- 0.25	0	
2022	- 0.02	0.1	- 0.25	0	
2023	- 0.02	0.1	- 0.25	0	
2024	- 0.02	0.1	- 0.02	0.1	
2025	- 0.02	0.1	- 0.02	0.1	
2026	- 0.02	0.1	- 0.02	0.1	
2027	- 0.02	0.1	- 0.02	0.1	
2028	- 0.02	0.1	- 0.02	0.1	
	- 0.02	0.1	- 0.02	0.1	
2060	- 0.02	0.1	- 0.02	0.1	
Total	-1.338	1.88	-1.284	1.70	
B+C	0.54		0.42		
C/B	1.41		1.33		

Example 3: CBA Assessment

- DFACTS project by Colombian utility EPM. Four technology alternatives were evaluated
- Traditional CBA included loss improvement, unattended demand, generation curtailment, administration operation and maintenance.

Holistic CBA and risk assessment:

- Installation in less than one year from PO
- Modular and redeployable "least regrets" alternative
- Use of existing substation area (no new environmental, right-of-ways, archeological permits)
- No pavement breaking permits, road closures and municipality planning review. No permits to intervene national roads
- Highly disruptive projects avoided in urban areas
- Less impact on communities and environment

Regulation Challenges and opportunities

- Need for new holistic CBA risk analysis to include nonmonetizable benefits and impactful costs savings.
 Permits and lead times becoming of highest relevance for convetional Tx projects
- Project by EPM (Example 3) motivated new regulation minset in Colombia, and new projects approved by the national planning agency
- Globally: new regulatory incentives needed to adopt these technologies and accelerate the energy transition (Optimize the existing grid first)