

Study Committee C2

C2 - POWER SYSTEM OPERATION & CONTROL

11151_2022

RES Generation Network Topology Optimization Based on an Adapted Genetic Algorithm

Andrey BRAMM¹, Alexandra KHALYASMAA^{1,2}, Stanislav EROSHENKO^{1,2}, Pavel MATRENIN²

¹Ural Federal University named after the first President of Russia B.N. Yeltsin

²Novosibirsk State Technical University

Motivation

Raise of share of the RES

of the RES grids Method/Approach

Intellectualization

of distribution

Genetic algorithm for optimization of grid topology

Two crossover types Two mutation operators Radial structure test

Distribution grid with only SPP Distribution grid with WPP, SPP, and CPP

Generation

dependence

on weather

Hourly changing

of the optimal

configuration

Objects of investigation

15-bus grid with SPP

with SPP, WPP, and CPP

Experimental setup & test results

Algorithm results for 15-bus grid with only solar power plants

Algorithm results for 14-bus grid with different power plants

Discussion

Results for 15-bus grid with only solar power plants

	Hours												
Parameters	04:00	05:00	06:00	07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00
$\sum_{i=1}^{n} e_{i-1} = e_{i-1}$	448.9	354.1	306.3	272.5	256.2	258.4	287.8	421.1	430.9	483.9	392.5	333.6	262.4
No. of Concession, Name	10.67	9.93	49.4	144.7	222.1	220	228	255.6	182.5	84.6	26.9	9.37	7.05
$\sum_{i=1}^{m} e_{i} = \sum_{i=1}^{m} e_{i}$	11.9	9.85	46.04	133.8	195.2	192.9	207.2	225.6	161.6	75.2	23.3	8.84	7.05
$(\Sigma)^{m,n} = $	11.5	-0.8	-6.8	-7.5	-12.1	-12.3	-9.1	-11.7	-11.5	-11.1	-13.4	-5.7	0

	-			-				
Hour	01:00	02:00	03:00	04:00	05:00	06:00	07:00	08:00
Algorithm solution (losses), kWh	1 0 2 9	1 0 5 5	982	1 0 9 9	873	877	1 2 3 9	1 036
Exhaustive search (losses), kWh	706	661	568	539	501	546	1 1 3 9	1 031
Hour	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00
Algorithm solution (losses), kWh	1 399	950	588	927	942	985	1 060	1 000
Exhaustive search (losses), kWh	1 399	686	410	444	614	640	802	735
Hour	17;00	18;00	19;00	20;00	21;00	22;00	23;00	24:00
Algorithm solution (losses), kWh	916	694	835	1 353	1 295	1 338	1 345	1 369
Exhaustive search (lasses) kitth	485	459	624	0.0.9	1.010	1.047	1 245	1 204

Conclusion

- Fast convergence of the algorithm (about 10-20 iterations), work for various grid and generation structure
- The created set of configurations may be used for the reclosers' switches schedules or for manual commutations
- The algorithm can be applied jointly with systems for the RES generation day ahead forecasting when planning the distribution grid operating modes
- The algorithm and can be applied as the tool for the grid schemes comparison at the project stage

Study Committee C2

C2 - POWER SYSTEM OPERATION &

CONTROL 11151_2022

RES Generation Network Topology Optimization Based on an Adapted Genetic Algorithm

continued

Crossover type 1

Two random parents are selected from the population. A random point of division of the parents' chromosomes is selected. The left part of the first parent and the right part of the second one forms the first child. The right part of the first parent and the left part of the second parent forms the second child.

Crossover type 2

Two random parents are selected from the population. Two random points of division of the parents' chromosomes are selected. Parental chromosomes "twist" at these points and get two children.

Flowchart of the genetic algorithm

Flowchart of the genetic algorithm

http://www.cigre.org

logo of author's institution

Study Committee C2 C2 - POWER SYSTEM OPERATION & CONTROL 11151_2022

RES Generation Network Topology Optimization Based on an Adapted Genetic Algorithm

continued

Distribution 15-bus network data

Line data						Load data						
From	То	Resistance, Ohms	Reactance, Ohms	lmax, A	Bus	Max active power, kW	Max reactive power, kVAR	Load curve				
1	2	1.35	1.32	265	2	44.1	44.99	1				
2	3	1.17	1.14	265	3	70.1	71.44	1				
3	4	0.84	0.82	265	4	40	142.82	2				
4	5	1.2	1.02	298	5	44.1	44.99	1				
2	9	2.01	1.32	298	9	70	71.44	1				
9	10	1.68	1.13	298	10	44.1	44.99	2				
2	6	2.55	1.72	298	6	140	142.82	3				
6	7	1.08	0.73	298	7	140	142.82	1				
6	8	1.25	0.84	298	8	70	71.44	1				
3	11	1.79	1.21	298	11	140	142.82	2				
11	12	2.45	1.65	298	12	70	71.44	3				
12	13	2.01	1.36	298	13	44.1	44.99	1				
4	14	2.23	1.50	298	14	70	71.44	2				
4	15	1.97	0.80	240	15	140	142.82	3				
10	14	1.90	1.12	298	-	-	-	-				
13	15	2.18	2.12	265	-	-	-	-				
7	11	2.98	1.54	263	-	-	-	-				

Load curves types

http://www.cigre.org