

Study Committee C4

Power system technical performance

Paper ID 10381

Active and reactive power control in an island system operated on inverter-based resources

Apostolos Papakonstantinou, Spyridon Bosmis, Stavros Papathanassiou

National Technical University of Athens (NTUA), Greece

Introduction

- Synchronous generators' substitution from inverter-based resources (IBRs) reduces inertia, negatively affects frequency regulation & requires IBRs shifting to "grid-forming" modes
- The implementation of such converter control principles in BESS is investigated, using the small Greek island system of Ag. Efstratios (aiming for RES share >85%) as a study case

Study case island system

The main components of the island system are shown below:

Simulated conditions

- The system **response is simulated** for a 100 s time interval, following a **major contingency**: a disconnection of the largest
- The residual system load (load RES production) is illustrated

BESS control schemes

BESS converter control principles implemented (grid forming, following & supporting – current / voltage source) are depicted below: \bullet

http://www.cigre.org

Study Committee C4

Power system technical performance

Paper ID 10381

Active and reactive power control in an island system operated on inverter-based resources

Results: BESS control modes

Results: BESS droop coefficients

• System response is examined for **3 BESS control modes**

BESS1 grid forming, BESS2 grid support. - current source (GS-CS)

- Flat frequency response
- Fast reserves solely from BESS1
 - x Uneven stress amongst BESS
 - x BESS2 not fully utilized
- Reliability concerns in case of BESS1 loss

BESS1 GS-voltage source (GS-VS), BESS2: GS-CS

- BESS1 takes up the entire power imbalance immediately following the contingency
- BESS1 power change leads to a frequency change, "communicating" the power imbalance to BESS2 & diesel unit (DU), providing primary reserves → Improved power distribution amongst units

- Simulation results for BESS droop coefficients (R) of 1%, 2% & 3% are illustrated below
- $\uparrow R \rightarrow \uparrow \Delta f$ caused deliberately by the BESS controller \rightarrow \uparrow contribution to primary regulation of other units

• Reliability concerns in case of BESS1 loss

BESS1 & BESS2 GS-VS

- Equal power sharing amongst BESS in all time scales
- Redundancy in case of a BESS failure → Preferable mode (implemented in all the right-hand side simulations)

Results: Operation with 100% IBRs

- Response shown for 100% IBRs share, in comparison to having a DU on-line (with & without providing primary reserves)
- No observable difference in frequency response with and without DU contribution to primary reserves
 - ✓ DU size is 1/10 of the two BESS combined
 - Droop coefficient of BESS (1%) < DU (5%)
 - ✓ Time response of BESS < DU</p>

- Operating **both BESS in grid supporting voltage source mode is preferable**:
 - ✓ Fully utilizing BESS regulating capabilities
 - Equally sharing the stress amongst the both BESS
 - ✓ Reassuring continuity of service if one BESS trips
- Configuring small DUs in a less frequency sensitive mode seems preferable, to reduce their wear and tear
- System operation without any synchronous generator is perfectly feasible

http://www.cigre.org