

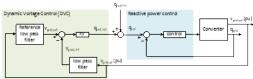
Study Committee C4

PS3 Challenges and advances in power system dynamics

Paper ID_10696

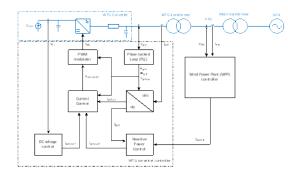
Experimental validation of a grid-following wind turbine connected to weak grids

Hamid SOLTANI, Gert Karmisholt ANDERSEN, Torsten LUND, John Godsk NIELSEN

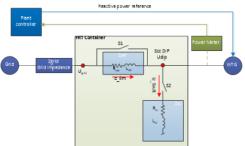

Vestas Wind Systems A/S

Motivation

- A significant part of the future converter based energy sources will be grid following converters operating in weak grids.
- A general solution enabling a grid following based Wind Turbine Generator (WTG) to operate properly in weak grid conditions down to a Short Circuit Ratio (SCR) level at 1.5.


Method/Approach

- The weak grid control is based on the standard twoaxis control of a grid converter with the addition of the Dynamic Voltage Controller (DVC).
- The DVC provides fast disturbance rejection for voltage disturbances with a soft transition toward the steady state condition.


Objects of investigation

- The grid control of the full-scale type 4 grid-following wind turbine is enhanced to operate under weak grid conditions.
- The WTG is connected to a PPC at the Point of Common Coupling (PCC).

Experimental setup

- Weak grid conditions are obtained by a Fault-Ride-Through (FRT) container, and three types of test are conducted: Voltage setpoint control, Change of SCR, and FRT tests.
- The pictures shows the FRT container.

Discussion

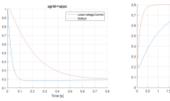
 Test is only conducted with new control structure as WTGs without the DVC are not expected to survive at the investigated low SCR levels.

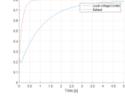
Conclusion

- A general solution for operating of the grid-following based wind turbines under weak conditions.
- The proposed weak grid control can handle voltage setpoint control, can withstand abrupt changes in the SCR level, and it shows to ride through voltage dips.
- The combination of the dynamic voltage control of the WTG and the centralised voltage control of the WPP enables the grid-following based WTG to operate properly at low SCR levels.
- Experimental results of a WTG in a real weak grid supports the validity of the selected approach to enhance the operational SCR range down to 1.5.

http://www.cigre.org

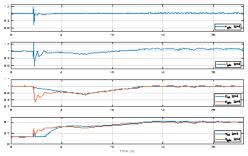
Study Committee C4

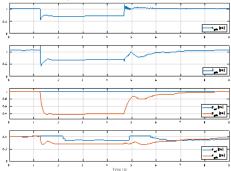

PS3 Challenges and advances in power system dynamics


Paper ID_10696

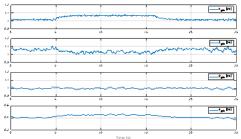
Experimental validation of a grid-following wind turbine connected to weak grids

Weak grid design

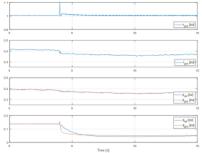

- The DVC acts fast on sudden disturbances of the WTG voltage and the voltage setpoint response is slowered
- The centralised PPC handles the steady state operating points.


Test of step change of SCR level

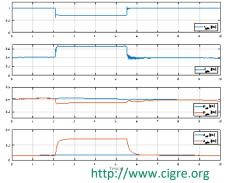
- The figure shows performance for a step change in SCR level at full load.
- At t=2s the SCR is changed from 20 to 1.5.


FRT test at full load

• WTG response during a three phase 55% voltage dip at full load power and a SCR=1.5.


Field setup of the FRT container

- WTG response during a voltage reference change at SCR=1.5.
- The voltage reference is increased with 5% at t=5s, and this is removed again after t=15s.


Test of step change of SCR level

- WTG response during a step change in the SCR level at partial load.
- At t=2s the SCR is changed from 20 to 1.5.

FRT test at partial load

 WTG response during a three phase 55% voltage dip at partial load power and a SCR=1.5.

