

$\mathsf{\Omega}$

Power Systems Technical Performance

Paper ID 10928

Equivalent Impedance of Wind and Solar Power Plants for AC Harmonic Performance Assessment of VSC-HVDC Systems

1 Gilles Tremouille, 2 Karolina Carvalho, 1 Juan-Carlos Urrego, 3 Amit Kumar, 3 Elisabetta Lavopa

1 General Electric France, 2 Transmission Investment, 3 General Electric United Kingdom

Why it is important?

- The occurrence of oscillations and harmonic currents and voltages is a common problem on HVDC transmission systems connected to converter-based networks, as wind and photovoltaic power plants.
- The accurate assessment of AC harmonic performance is of paramount importance for design and planning of HVDC systems.
- This paper details how to properly represent voltagesourced converters on AC harmonic performance assessments.

Method/Approach

- Presentation of the most common topology and control strategy of voltage-sourced converters (VSC) based on literature review.
- Definition of impedance model of the VSCs considering the most common topology and control strategy identified.
- Comparison of impedance model results with laboratory tests provided by a manufacturer.
- Identification of the main aspects of the VSCs that are relevant for the impedance model.

Objects of investigation

- The objects of investigation are voltage-sourced converters used on wind turbines generators and PV units.
- Highlight of main aspects of VSCs which are relevant for properly represent them on AC harmonic performance analyses.
- Present an analytical expression to represent the equivalent impedance of the VSCs.

Experimental setup & test results

The most common topology and control strategy VSC, presented in Fig 1, consists of:

- Two-level three phase wire topology; \circ
- LC filter with passive damping; \circ
- Synchronous reference frame control (dq control); \circ
- Synchronization by phase-locked loop (PLL); \circ
- Proportional-integral (PI) controller and feed \circ forward gain;
- PWM switching. \circ

The detail VSC circuit can be represented by the simplified single-line diagram of Fig 2. Being:

- V_i the VSC output voltage defined from control; \circ
- V_{sym} the harmonic voltage generated on switching; \circ
- Ō Z_i control transfer function between V_i and PCC current (l_g) ;
- K_v control transfer function between V_t and PCC \circ voltage (V_o) .

From Fig 2, the equivalent impedance of the VSCs is:

$$
Z_{\sigma}(\omega_h) = \frac{Z_f(\omega_h)\big(Z_{L\sigma}(\omega_h) - Z_t(\omega_h)\big)}{Z_{L\sigma}(\omega_h) + Z_f(\omega_h) - K_v(\omega_h)Z_f(\omega_h)}
$$

- Being Z_f the equivalent impedance of L_f , R_f , C_f and Z_{ls} of L_s . PLL, PWM switching and operating conditions are considered on Z_i and K_v .
- Laboratory test results of a VSC from PV units are used as benchmark to validate the model. The comparison is shown in Fig 3.
- . The relevance of each part of the VSC to its equivalent impedance is assessed by disregarding individual parts from the proposed equation (see Fig. 4). The cases are:
- Complete Z_o with the VSC at nominal power \circ operation:
- Disregarding K_v transfer function; \circ
- Disregarding the delay related to sampling and \circ PWM (K_{dl}) ;
- Disregarding the PLL; \circ
- Considering only the LC filter $(Z_{xx}$ parallel to Z_f); \sim
- Complete Z_o considering the VSC operating at zero σ power $\langle I_d = I_q = 0 \rangle$;
- Only the shunt part of the LC filter (Z_r) . \circ
- Equivalent impedance of the VSC for different active and reactive power settings presented in Fig 5.

Discussion

- . As seen in Fig 3, the proposed equivalent model is similar to the results from the laboratory tests.
- From results shown in Fig 4, the main aspects of the VSC relevant to its equivalent impedance model are: output filter comprising L_f , R_f , C_f and L_s ; current control transfer function Z_i ; voltage control transfer function K_v ; delay related to PWM switching and sampling; PLL; operating condition of the VSC.
- . The impedance results depicted in Fig 5 show the active and reactive power settings impact, respectively, the phase and magnitude at low frequency range.

Conclusion

- The most common topology and control strategy of VSCs used in wind turbine generator and PV units is detailed.
- An equivalent impedance model of VSCs is presented and validated.
- The main aspects of the VSC that are relevant to properly represent them in AC harmonic performance assessment are identified.

http://www.cigre.org

$C₄$ Power Systems Technical Performance

Paper ID 10928

Equivalent Impedance of Wind and Solar Power Plants for AC Harmonic Performance Assessment of VSC-HVDC Systems continued

Fig 1: Typical Voltage-sourced converter topology and control

- Two-level three-phase wire topology;
- LC filter and passive damping;
- Synchronous reference frame control (dq control);
- Synchronization by phase-locked loop (PLL);
- Proportional-integral (PI) controller and feed forward gain;
- Delays of sampling and switching PWM functions.

Fig 3: Comparison between VSC equivalent impedance model and manufacturer benchmark

Fig 2: Simplified single-line diagram of grid-connected VSCs

Fig 4: Network VSC impedance disregarding different parts of Zo

Fig 5: VSC equivalent impedance for different operating conditions

http://www.cigre.org