

Study Committe C4

Power System Technical Performance

Paper ID: 1016

Stability Analysis on the Power System of Ireland and Northern Ireland for Operation with 75% Inverter-Based Resources.

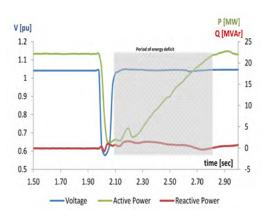
Ismail IBRAHIM, Mostafa BAKHTVAR, Dusko NEDIC, Emma FAGAN and Eoin KENNEDY
EirGrid
Ireland
Ismail.ibrahim@eirerid.com

Motivation

- 80% renewable electricity generation by 2030.
- System Non-Synchronous Penetration

 $\frac{\text{Non Synchronous Generation} + \text{Net Interconnector Imports}}{\text{Demand} + \text{Net Interconnector Exports}} \times 100$

Secure, reliable operation of power system guaranteed up to a certain SNSP level.



A limit on SNSP ———— wind dispatch down

Methodology/Approach

Preparation of snapshots Mitigation (Step-Back Voltage security studies through VSAT Selection of snapshots from the last A number of different mitigations 12 months - historical cases with focusing on: and their combinations is SNSP >=60% Divergent contingencies considered: ~3000 of the initial snapshots were Voltage issues 1.Large Energy Users (UPS RMS dynamic studies using TSAT and disconnections). selected and wind were scaled up to give us 75% SNSP. focusing on: 2.Batteries connected by the 1st of April 2021. Frequency/rocof insecurities Machine learning based on data Swing margin insecurities Adjustment to tie-line flow. clustering to reduce the number of Option 3 only as the last resort if 1. representative study snapshots from WECC 2 models used to simulate the and 2. or their combination is ~3000 to 300 and further to 89. effect of Voltage Dip Induced insufficient Based on selection refinements and Frequency Dip (VDIFD). with extreme snapshots the final

Voltage Dip Induced Frequency Dip Phenomenon

batch of 137 study snapshots were

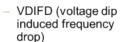
compiled.

- There will be some MW loss straight after the fault (=>ROCOF impact) – low voltage will propagate throughout the affected area; wind power output might need some time to recover and trigger VDIFD.
- Low voltage propagation drives the effect of VDIFD.

Study Committe C4

Power System Technical Performance

Paper ID: 1016

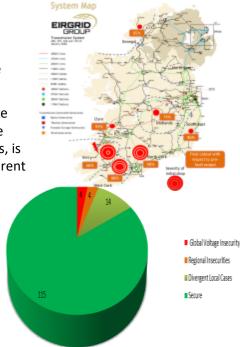

Stability Analysis on the Power System of Ireland and Northern Ireland for Operation with 75% Inverter-Based Resources.

Ismail IBRAHIM, Mostafa BAKHTVAR, Dusko NEDIC, Emma FAGAN and Eoin KENNEDY EirGrid Ireland Ismail.ibrahim@eirerid.com

Assumptions

Assumption	Without VDIFD	VDIFD
75% SNSP	~	~
Min 8 Units	~	~
23 GWs inertia floor	~	~
ROCOF 1 Hz/s	~	~
Batteries react to frequency (1/4/2021: 166 MW)	X	X
Data Centres react to frequency	X	X
WECC 1 Wind Farm models	~	X
WECC 2 Wind Farms models	X	~

- 2 Study streams:
 - Without VDIFD


Low Voltage Propagation and VDIFD Impact

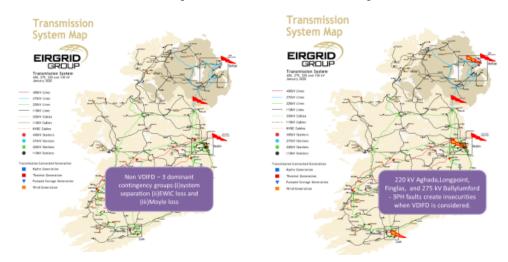
A three-phase fault in the South West region showing the impact of:

- The initial active power drop in every single region using the red concentric circles (the more concentric circles the bigger the impact is).
- The final active power recovery- where the percentage of the recovered active power, with respect its pre-fault values, is denoted by orange rectangles for different regions.

Voltage Security Studies

 High wind power output at two different weekly connected nodes are the main drivers of the observed voltage insecurities. These are known issues and are being managed in realtime operations.

Study Committe C4


Power System Technical Performance

Paper ID: 1016

Stability Analysis on the Power System of Ireland and Northern Ireland for Operation with 75% Inverter-Based Resources.

continued

Transient Stability Studies - Summary

Conclusion

- This study used a novel modelling approach (IBR model with VDIFD Phenomenon) and represents a significant step-change in methodology.
- Used VDIFD and machine learning.
- There were frequency insecurities which increased due to VDIFD impact, but there are mitigation options (mainly fast frequency response from batteries) for all of them.
- Study was completed in April 2021 and it was recommended to the EirGrid Group's Operational Policy Review Committee to move forward with the 75% SNSP trial.
- A successful operational trial took place between April 2021 and March 2022, and a limit of 75% SNSP is now operational policy.
- We are aiming to increase the SNSP further, with a goal of 95% by 2030.