

Study Committee C4

Power System Technical Performance

Paper 1103

Measurement and Simulation of Harmonic Propagation in Transmission Systems

R. Stiegler¹, J. Meyer¹, M. Nazemi²

¹Technische Universität Dresden, ²Amprion GmbH

Motivation

- Growing number of harmonic sources (e.g. wind and solar plants, HVDC stations, FACTS, ...)
- Harmonic emissions have to be coordinated and limited
- Harmonic propagation is required for calculation of emission limits according to IEC 61000-3-6
- Harmonic propagation based on simulations can contain uncertainties due to complexity of harmonic models: *How do simulations compare with reality?*
- Aim: **Measurement based identification of harmonic propagation**

Method

- Measurements in three network sections (A, B, C) in the German 380-kV-network in cooperation with two TSO's
- Dedicated and significant source of harmonics necessary • Section A and B: Intentional switching of
	- transformer (inrush current)

- Section C: Emission of arc furnace
- Measurement of relevant voltage harmonics with GPSsynchronized transient recorders
- Prior characterization of used voltage transformers confirms suitability up to 25th harmonic order

c

Analysis procedure

Definition of influence coefficient:

$$
\chi_{\rm XY}^{(h)} = \frac{\Delta \underline{U}_{\rm Y}^{(h)}}{\Delta \underline{U}_{\rm X}^{(h)}}
$$

 $c_{XY}^{(h)}$: influence of harmonic h at node X (source node) on harmonic h at node Y (influenced node)

Calculation steps:

- DFT on synchronous 10-cycle-intervals
- Transfer in symmetrical components
- Calculation of difference spectra to remove constant background harmonics present in network
- Calculation of influence coefficient with regression **Regression example: magnitude of**

Comparison with simulation

- Large-scale network model for section A was developed in standard power flow calculation package
- Improved harmonic models have been implemented in area around section of measurements:
	- Geometrically modelled lines
	- Transformer stray capacitances
	- Harmonic impedance equivalents for downstream networks and customer installations
- Good match of results for low order harmonics (damping)
	- Slightly shifted range of amplification (resonance) between measurement and simulation
		- \triangleright High differences for individual harmonics
		- Ø Approximate prediction of frequency and

Influence coefficient depending on distance

- Aggregated representation of all measurement results: influence coefficient depending on line length
- Low order harmonics (*h* ≤ 9):
	- Damping dependent on line length
		- Damping not monotonous \rightarrow influence of customers
- Higher order harmonics:
	- Significant resonance amplifications No clear tendency but resonances are more
- probable with longer lines $0.\dot{8}$ \uparrow $\begin{array}{c}\n1.6 \\
-0.6 \\
-0.4 \\
-0.2 \\
0.7\n\end{array}$ $A1 \rightarrow A2$ ዋ ₫ $AA \rightarrow AB$ $A1 \rightarrow A4$ $\bar{\Phi}$ $B1 \rightarrow B2$ ģ $B1 \rightarrow B3$

 20

 $|e^{(h\leq 25)}|$. ă

> • Influence coefficients can be determined by measurements with distinct harmonic source

/in km

40 60 80

- High resonance amplification may occur at higher orders
- Accurate harmonic simulations can give a reasonable estimate of influence coefficients (especially at *h* ≤ 9)
- Continuous measurements recommended (consider impact of different load conditions)

http://www.cigre.org

100 120 $B2 \rightarrow B3$

Ф $C1 \rightarrow C2$

Study Committee C4

Power System Technical Performance

Paper 1103

Measurement and Simulation of Harmonic Propagation in Transmission Systems

continued

Voltage transformer accuracy

- Inductive voltage transformer can have high inaccuracy in harmonic range
- In all three network sections same type of voltage transformer were installed
- \rightarrow Characterization of four samples of transducer type \rightarrow Three measured noninvasively under realistic conditions (in-situ), one invasively in the lab
- Up to 18th harmonic results are reliable (ε_{U} < 5%), up to 25th harmonic results are indicative ($\varepsilon_{\text{\tiny U}}$ < 15%)

Characterization of excitation: transformer switching

- **Section A and B**: switch-on process of a 380 kV / 110 kV, 300 MVA transformer
- Inrush current depends strongly on switching moment \rightarrow 14 resp. 15 switch-on's in each network section
- Broad spectrum of long-lasting harmonic currents
- Unbalanced harmonic currents:

Characterization of excitation: arc furnace

- Section C: normal operation of arc furnace over 18 hours
- In melting phases ($S \approx 100$ MVA ... 150 MVA) high dynamics with Δ*S* ≈ 5 MVA … 10 MVA between consecutive 10-cycle-intervals
- Arc furnace is emitting significant and highly varying harmonics and interharmonics
- No zero-sequence components at EHV side due to delta winding of transformer

Regression of influencing coefficient

Maanitude:

Absolute value of influencing coefficient is determined as slope of a linear function:

$$
\left|\Delta \underline{\underline{U}}_Y^{(h)}\right|=\left|\underline{\underline{c}}_{XY}^{(h)}\right|\cdot\left|\Delta \underline{\underline{U}}_X^{(h)}\right|
$$

Phase anale:

- Phase angle is determined by separate regressions for real and imaginary part
	- · Rotation of individual 10-cycle-spectrum differences so that voltage phasors at node X become real:

$$
\Delta U_{\rm X}^{(h)'} = \Delta \underline{U}_{\rm X}^{(h)} \cdot \frac{\Delta \underline{U}_{\rm X}^{(h)}}{|\Delta \underline{U}_{\rm X}^{(h)}|} \cdot \frac{\Delta U_{\rm X}^{(h)}}{\Delta \underline{U}_{\rm X}^{(h)}} \cdot \frac{\Delta U_{\rm X}
$$

· Individual regressions for real and imaginary part: $\mathfrak{R}\left(\Delta U_n^{(h)}\right) = \mathfrak{R}\left(c_n^{(h)}\right) \cdot \Delta U_n^{(h)}$

$$
\Im\left(\Delta\underline{U}_{\mathbf{Y}}^{(h)}\right)=\Im\left(\underline{c}_{\mathbf{XY}}^{(h)}\right)\cdot\Delta U_{\mathbf{X}}^{(h)}\text{'}
$$

Calculation of phase angle:\n
$$
\frac{1}{2}
$$

$$
\angle \underline{\mathcal{L}}_{XY}^{(h)} = \mathrm{atan}\left(\frac{\mathfrak{A}(\underline{\mathcal{L}}_{XY}^{(h)})}{\mathfrak{A}(\underline{\mathcal{L}}_{XY}^{(h)})}\right)
$$

- · Due to absolute synchronous measurement, propagation time on the line must be considered
	- Example: line length of 100 km and $c_0 = 3.10^8$ m/s corresponds to a delay of 0.33 ms \rightarrow phase shift of 60° for the 10th harmonic
	- Correction of phase angle of influencing coefficient: $\frac{l_{XY}}{c_0}$. $\frac{360^{\circ}}{20 \text{ ms}}$ $\Delta \angle \mathcal{L}_{\text{Sov}}^{(h)}$ $=$ $\cdot h$ $c_{\rm 0}$

Consideration of uncertainty:

For each regression the 95% confidence interval is determined to consider uncertainty of results

http://www.cigre.org

Study Committee C4

Power System Technical Performance

Paper 1103

Measurement and Simulation of Harmonic Propagation in Transmission Systems

continued

Regression result.

Detailed results

- Regression value as circle, confidence interval as whiskers \rightarrow true value is with 95 % probability inside the colored area
- 95 % confidence interval • Influence coefficient for positive- (1) and negativesequence (2) component is similar, coefficient for zerosequence (0) is different \rightarrow influence of sequence component impedance
- True value of influence coefficient for positive- and negative-sequence component is most probable in overlapping area of confidence intervals
- Change of phase angle confirms existence of resonances

