

Study Committee C5

Electricity Markets & Regulations

10604

SPATIOTEMPORAL EFFECTS OF NODAL MARGINAL PRICING

Tatiana VASKOVSKAYA

V.A. Trapeznikov of Institute of Control Sciences of Russian Academy of Sciences

OJSC "Trading System Administrator of Wholesale Electricity Market Transactions "

Introduction

- Locational marginal pricing allows optimal scheduling of generators while delivering power under constraints
- Price signals are necessary for effective usage of available and emerging resources during
 - creation of the conditions for new market participants
 - integration of wholesale and retail markets

Motivation

- A lot of effort is dedicated to formulating mathematical models and algorithms. OPF problem has been considerably tangled
- However, the possibility of intuitively explaining LMP and shadow prices of binding constraints through marginal resources meets serious challenges

Methodology

- The approach is based on marginal resources' respond to changes in the system
- The responses are price-bonding factors (PBF) or price linkages to marginal resources
- Locational marginal prices are the sum of PBFs multiplied by resources' marginal costs

Framework

- AC OPF framework for day-ahead market with transmission, voltage, ramping, limited energy, and storage constraints
- The power system of 10 000 nodes, 16 000 branches
- Daily calculations in 24-hour time intervals

Conclusion

- Multi-period AC optimal power flow shapes a spatiotemporal structure of locational marginal pricing
- We give an intuitive understanding of how marginal resources are exploited
- We examine four combinations of different constraints in real pricing situations
- Ramping, limited energy, and storage constraints are intertemporal and connect different time intervals
- Transmission and voltage constraints are locational but create price signals due to rescheduling of resources through intertemporal constraints
- Thus , LMPs will be formed by prices of marginal resources from different time intervals

1. Limited Energy Resources (LER)

- Has limited overall energy = area under scheduling plot is constant
- Generation at certain hour is a choice of the market operator

When generation is constant LMPs differ. When generation differs LMPs are identical

- LMPs are flattened by LER throughout hours = LER is not interested in changing its output.
- LMPs are identical only at LER's node
- LER is either sets prices or has active limited energy constraint
- In the latter case it rather collects prices of other marginal resources

Discussion

- LER reallocates marginal resources to fit its optimality
- LER transfers prices from one hour to another
- LER maintain two modes simultaneously:
 - price-taking mode when LMP is formed by other resources.
 - price-forming mode when LER sets the price taken from other hours

http://www.cigre.org

Study Committee C5

Electricity Markets & Regulations

10604

SPATIOTEMPORAL EFFECTS OF NODAL MARGINAL PRICING continued

2. Ramping Constraints

- To meet a ramp-down rate, a generator need to reschedule its output with help of closest infra- and extramarginal resources
- Marginal resources from the adjacent time interval participate in forming LMPs

The city load, flow to the city, and marginal resources' output, MW

Ramp-down rate prevents reducing CPP's output

LMP at marginal resources' nodes and shadow price of flow to the city, rub/MWh

Why LMP at CPP at hour 21 is so high?

Adding 1 MW leads to

- Two times increasing of CPP's output by 1 MW at hours 21 and 22 due to ramping constraint
- Decreasing OPP's output by 0.828 MW and increasing load of DR by 0.264 MW to balance CPP's changes at hour 22

 $LMP = 1,300 \cdot 2 - 900 \cdot 0.828 - 800 \cdot 0.264 = 1,643.6 \frac{r_{ab}}{MWh}$

What is shadow price of ramping constraint?

Removing 1 MW from ramp-down rate leads to

- Increasing CPP's output by 1 MW at hour 22 we can't abandon CPP at hour 21 due to transmission constraint
- Same changes in OPP's and DR's output

```
v = 1,300 \cdot 1 - 900 \cdot 0.828 - 800 \cdot 0.264 = 343.6 \frac{rub}{MWh}
```

Why shadow price of transmission constraint at hour 21 is so high?

Removing 1 MW from transmission capacity leads to

- Increasing CPP's output by 1.252 MW at hour 21 we supplied 0.252 through another network
- Alike changes in OPP's and DR's output at hour 22 as in the case of LMP at CPP's node

We repeat it again for hour 22 due to ramping constraint

 $\sigma = 1,300 \cdot 1.252 - 900 \cdot 0.959 - 800 \cdot 0.353$ $+ 1,300 \cdot 1.252 - 900 \cdot 0.990 - 800 \cdot 0.361 = 929.9 \frac{rub}{MWh}$

Discussion

A generator with an insufficient ramp-down rate produces

- a peak price higher than any marginal cost in the system
- a doubled shadow price of a transmission constraint

http://www.cigre.org

Study Committee C5

Electricity Markets & Regulations

10604

SPATIOTEMPORAL EFFECTS OF NODAL MARGINAL PRICING continued

3. Energy Storage Systems (ESS)

- ESS is like LER with two periods of flattened prices charging and discharging
- If ESS has storing inefficiency, prices are identical on a logarithmic scale — to provide equality of selling and buying profits in absolute terms. Round trip efficiency

 $\left(LMP_{L,h_{1}}-\mathcal{C}_{L,h_{1}}\right)\eta_{1}^{h}\eta=\left(LMP_{L,h_{2}}-\mathcal{C}_{L,h_{2}}\right)\eta_{1}^{h}$

Bid/offer price Storing efficiency

LMP at ESS's node, rub/MWh

4. Voltage Constraints

- Negative price at node v reflects the excess of reactive power.
- It is formed by RES with zero cost minus cost of MGs at hours 2–5 which outputs decreased after adding 1 MW at node v

Discussion

- Due to the voltage constraint active power from RES redistributes to LER and other MG for the considered hour and other hours of LER's schedule
- Voltage component eliminates the contribution of marginal resources in a local area to LMPs outside.

Charging hours with bid price 700 rub/MWh

Discharging hours with offer price 800 rub/MWh

What is LMP at ESS's node at hour 4?

Adding 1 MW leads to

- Inability to deliver power from MG with cost 850 rub/MWh
- · Reducing consumption of ESS by 1 MW with cost 700 rub/MWh
- Decreasing ESS's generation at hour 8 by $1\cdot 0.8^4\cdot 0.81 = 0.332$ MW with cost 800 rub/MWh
- Increasing LER's output at hour 8 by 0.334 MW with LMP 1,667.95 rub/MWh

$$LMP_{4} = \underbrace{\left(700 - 800 \cdot 0.8^{4} \cdot 0.81\right)}_{ESS's \text{ contribution}} + \underbrace{1,667.95 \cdot 0.334}_{LER's \text{ contribution}} = 991.51 \frac{rab}{MW/k}$$

Discussion

- ESS' pricing is like LER. However, ESS contributes to price formation with bidding prices while LER only redispatches the power of other resources
- Transmission constraint employs marginal resources from further time periods when ESS discharges.

http://www.cigre.org