

C6 PS1 ACTIVE DISTRIBUTION SYSTEMS AND DISTRIBUTED ENEGY RESOURCES 10311 2022

Control Strategy of Conservation Voltage Reduction for Energy Saving in Low-Voltage Distributed Network

Saehwan Lim

Korea Electrotechnology Research Institute

Introduction

- What is CVR?
 - Reduce energy by lowering the voltage
 - Tap changer, Reactive power device

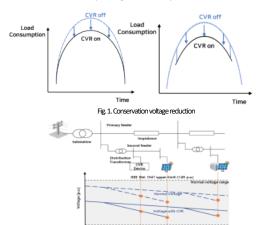
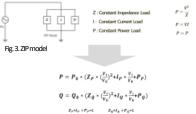



Fig. 2. Conservation voltage reduction in distributed network

Approach

Voltage dependent load modeling

CVR Factor(load characteristic)

Rate of change of active power according to voltage change

$$CVR_f = \frac{\% \triangle P}{\% \triangle V}$$

- Accurate CVR_f is required to evaluate the effectiveness of CVR
- Load classification
 - Residential, Commercial, Industrial
 - Time, Weather, Weekday-end, Season

Load parameter estimation

- Estimate the load parameter accurately
 - System instability (Voltage violation)
 - Increase system loss
 - To evaluate the performance of CVR
- The trurh change of power by CVR
 - The change due to other factor
 - Light real on/off....

Load parameter estimation method

- Comparison-based method
- Synthesis-based method
- Regression-based method
- Simulation-based method

Simulation based method

- Compare the power flow(CVR-off) and measured data(CVR-on)
- · The accurancy of system modeling is important
 - Load characteristic
 - Time
 - Weather and etc...

Estimation method for ZIP coefficient

Using the equation between power and voltage
 P = P₀ * (Z_P * (^{V₁}/_x)²+I_P * ^{V₁}/_x+P_P)

$$\frac{P}{P_n} = (Z_P * (\frac{V_i}{V_n})^2 + I_P * \frac{V_i}{V_n} + P_P)$$

http://www.cigre.org

 K든RI

 한국전기연구원

 KKREA ELECTROTECHNOLOGY RESEARCH INSTITUTE

Control Strategy of Conservation Voltage Reduction for Energy Saving in Low-Voltage Distributed Network continued

C6 PS1

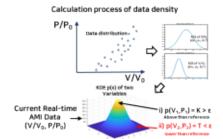
ACTIVE DISTRIBUTION SYSTEMS AND

DISTRIBUTED ENEGY RESOURCES 10311 2022

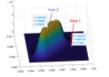
Estimation method for ZIP coefficient

- Using curve filting method with volatge(^{V_i}/_{V₀}), power(^P/_{P₀}) from AMI
- Need P_{LL0}(t) which is the power when voltage is 1 p.u.

Fig. 6. Estimation selectiom Process


Data acquition decision

- Use the AMI data(V, P, Q) right before/after Q compensation
 - Truth change due to voltage variation
 - Similar to OLTC operation
 - $PV Q \rightarrow System V \rightarrow Load P, Q variation$


Fig. 8. Data acquition point

- Assume that the load characteristic of today is similar with yesterday
- If not, use standard data which is classified with weather/weekday-end/season/time.
- The density of data is calculated with KDE function, and it is used to decide which data will be used. (yesterday or standard data)

Data selection process

- Case 1 : lower than denstity reference
 - Standard data + curren data from AMI
- Case 2 : Higher than denstity reference
 - Yesterday data + curren data from AMI

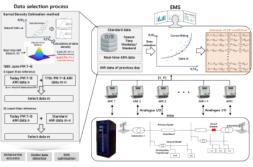


Fig. 10. Data selection process

Fig. 11. The configuration of the estimation method for ZIP coefficient

Optimization method for energy saving

Voltagw dependent load + system loss + PV inverter loss

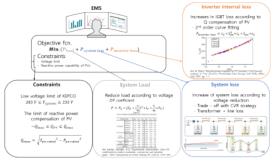


Fig. 12. The optimization method for enegy saving http://www.cigre.org

Fig. 9. Calculation process of data density

Data colection

Fig. 7. Curve fitting method

C6 PS1 ACTIVE DISTRIBUTION SYSTEMS AND DISTRIBUTED ENEGY RESOURCES 10311 2022

Control Strategy of Conservation Voltage Reduction for Energy Saving in Low-Voltage Distributed Network continued

Control strategy

Flow chart of the strategy (15s period)

Fig. 13. Flow chart of the strategy

Verfication platform

HILs platform(C-HIL + P-HIL)

Fig. 14. The HIL platform for verification

Table 1 Communication methods between the components

	Component	Communication method DNP 3.0	
	EMS server		
	PV emulator	Analogue I/O	
RTDS	Grid simulator	Analogue I/O	
_	Hybrid CVR device	Analogue I/O	
	Smart meter (AMI)	Analogue I/O	
	PV emulator	IEC 61850 TCPIP	
EMS server	Hybrid CVR device	Modbus TCPIP	
	Smart meter (AMI)	Modbus RS485	

Monitoring system

(a) overall system and essential information for system operator (b) shows the AMI and PV active/ reactive power data (c) status of the additional reactive power compensation device (d) the operation result of the proposed CVR strategy

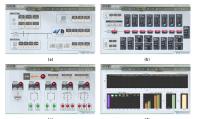
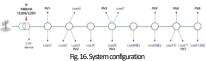
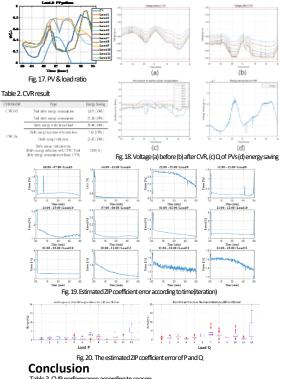



Fig. 15. Monitoring system of the platform

System configuration


- 48kW 12 Load (pf : 0.91~0.98)
- 8 PV(3kW 6kW)

Simulation result

Winter - Weekday - Sunny

Table 3. CVR performance according to season

		Sming	Summer	Fall	Winter	Amual
	Energy reduction [kwh]	1160.9	668.1896	1160.9	1871.48	4864.47
	Energy reduction rate [%]	1.20	0.69	1.20	196	1.26
2	Darge relation asserting to asser	• 4.9M\	Nh(1.26%) of ene	ergy savin	g per year

The performance is the highest in winter

Heating load http://www.cigre.org

Fig. 21. Energy reduction according to season