

Study Committee C6

Active Distribution Systems and Distributed Energy Resources

Paper ID 10525

Distributed Energy Resource Benchmark Models for Distribution Impact Assessment Developed by CIGRE Working Group C6.36

Jouni PEPPANEN*1, Jason TAYLOR², Daniel FONSECA³, Josh SNODGRASS⁴, Shengen CHEN⁵

Electric Power Research Institute^{1,2}, Sinapsis – Inovação em Energia², POWER Engineers Inc.⁴, RLC Engineering PLLC⁵

USA^{1,2,4,5}, Brazil³

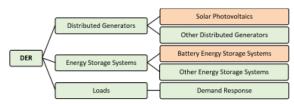
Motivation

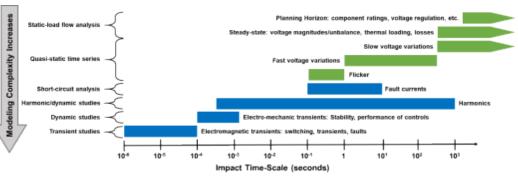
- DER model requirements increasing to effectively assess and plan active distribution systems
- DER models must sufficiently capture the DER temporal characteristics and system interactions
- Lack of DER benchmark models that can serve as a common reference

CIGRE WG C6.36 - DER Models for Impact Assessment

- Objective to develop:
 - DER benchmark model framework, and
 - Set of *benchmark DER models* for QSTS simulations

QSTS Simulations


- Middle ground between static power flow and dynamic/electromagnetic transient (EMT) simulations
- Sequence of static power flows
- Captures discrete controls and time-dependencies
- Increasingly used at the distribution level
- Example applications:
 - Assess the impact of DER variability and controls
 on distribution system volt-var controls
 - Evaluate energy storage, demand response, and energy-constrained resources
 - Determine DER curtailment losses


DER Benchmark Model Framework

- Two key components:
 - DER benchmark model structure
 - DER benchmark model specification requirements

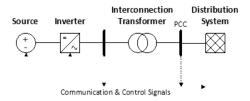
DER Benchmark Model Structure

- Mutually exclusive: minimal overlap between individual benchmark models
- Collectively exhaustive: all relevant DER types included
- Specific for QSTS simulations
- Other structures possible
- Focuses on individual DER
- DER aggregations can be represented by a collection of benchmark models

http://www.cigre.org

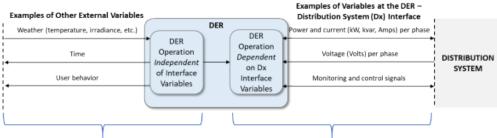
Study Committee C6 Active Distribution Systems and Distributed Energy Resources

Paper ID 10525


Distributed Energy Resource Benchmark Models for Distribution Impact Assessment Developed by CIGRE Working Group C6.36

DER Benchmark Model Specification Requirements

- · To provide uniformity across the benchmark models
- To establish a *structure* for the future derivation of benchmark models for other DER
- Key components: introduction, benchmark model, and application considerations
- Introduction:
 - Background
 - Principles of operation
 - Technology types
 - Etc.
- Benchmark model:
 - DER components relevant for QSTS simulations
 - DER operation dependent on distribution system
 - Input/output variables, internal parameters, and their relationships
 - Assumptions and simplifications employed
- Application considerations:
 - Aspects to consider when applying or implementing the DER benchmark model
 - Variations of the benchmark model
 - QSTS time step
 - Study usage
 - Data requirements for the model usage
 - Industry application of the DER
 - Comparison of models currently available
 - Etc.


DER Benchmark Model Components

- Source:
 - E.g., PV panels, or battery
 - · Important but simple equivalents may suffice
- Inverter:
 - Active & reactive power capabilities
 - Smart inverter functions and other controls
- Interconnection transformer:
 - Separate from the benchmark models
- Monitoring & controls:
 - Monitoring & controls interfacing DER and the distribution system

DER Benchmark Model Scope

- Aggregate DER behavior
- Focus on representing DER operation that
 - Impacts the distribution system state and/or
 - Is impacted by the distribution system state
- Not necessary (but permissible) to represent aspects independent distribution system state

Equivalized model

Focus of the Benchmark Models

Study Committee C6

Active Distribution Systems and Distributed Energy Resources

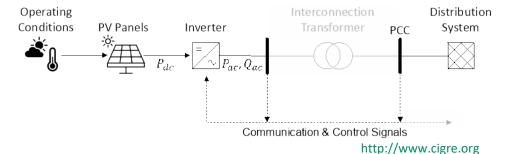
Paper ID 10525

Distributed Energy Resource Benchmark Models for Distribution Impact Assessment Developed by CIGRE Working Group C6.36

PV System Benchmark

Important Factors Impacting PV System Operation	
External	Internal
 Solar irradiance Temperature Other weather parameters Shading and soiling of PV panels PV panel age 	 PV system configuration (centralized, string, microinverters, etc.) Number, rating, and type of the panels and inverters Panel orientation and tracking (fixed, single-axis, dual-axis) Inverter controls (incl. maximum power point tracking (MPPT) scheme and smart inverter functions) Plant-level controls (if any)

PV Benchmark – Components


- PV panel model:
 - Aggregated dc (kW) ratings and dc (kW) power generation
 - Many ways to represent the dc generation
 - PV dc generation largely independent of the distribution system state
 - Hence, not necessary to perform PV resource modeling as a part of the QSTS simulation
- PV inverter model
 - A separate benchmark model developed by the WG C6.36
 - Aggregated ac (kW and kVA) ratings
 - Reactive power capability
 - Efficiency
 - Smart inverter controls

PV Benchmark – Assumptions

- Aggregate operation
- Quasi-static steady-state model
- Voltage-insensitive model
- Normal distribution system operating conditions
- Balanced phase powers

Conclusion & Future Work

- DER model requirements are increasing, but there is a lack of DER benchmark models to serve as a reference
- To address these needs, CIGRE WG C6.36 has developed:
 - DER benchmark model framework, and
 - Set of benchmark DER models for QSTS simulations
- C6.36 Next steps:
 - Publish the work in CIGRE technical brochure in 2022
 - Organize a tutorial in 2023
- Future work beyond WG C6.36:
 - DER benchmark models for other DER
 - DER benchmark models for aggregated DER
 - Expand DER benchmark models from autonomous controls to *centralized controls* by (ADMS) and/or DERMS
 - DER benchmark models for other study types
 - Validate DER benchmark models against laboratory and field testing of DER

