

OHitachi Energy

Study Committee C6

Active Distribution Systems and Distributed Energy Resources

Paper 10683_2022

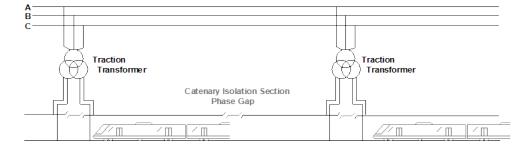
Improvement of high-speed railway power supply utilizing power electronic solutions – case studies

Philippe MAIBACH, Chuanhong ZHAO, Uzair JAVAID, Tobias THURNHERR

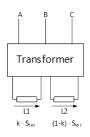
Hitachi Energy Ltd., Switzerland

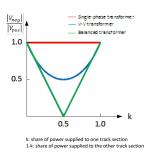
Motivation

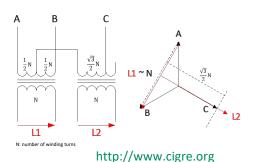
High-speed railway systems are high-power single-phase loads to the utility grid.


Traditionally, they are supplied by transformers from the three-phase utility grid.

Although straight-forward, this supply concept includes a number of drawbacks:


1. 100% unbalance load – connection to HV / EHV required


- 2. Unbalance needs to be shared between phases
 - Railway system needs to be split by neutral sections
 - Substantial transients when a train passes a neutral section
- Special "balancing" transformer topologies are required
 - Even so, balancing will not be ideal



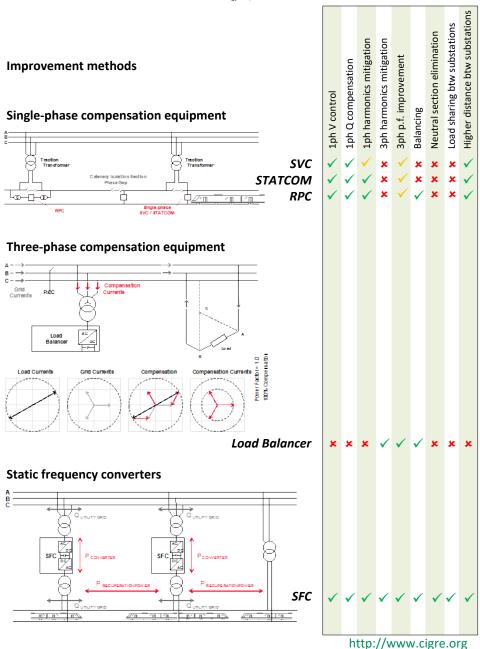
Classical solution: balancing performance

Example: Scott transformer

HITACHI Inspire the Next

OHitachi Energy

Study Committee C6


Active Distribution Systems and Distributed Energy Resources

Paper 10683_2022

Improvement of high-speed railway power supply utilizing power electronic solutions – case studies

Philippe MAIBACH, Chuanhong ZHAO, Uzair JAVAID, Tobias THURNHERR

Hitachi Energy Ltd., Switzerland

OHitachi Energy

Study Committee C6

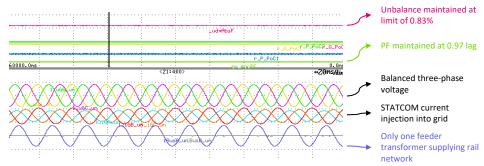
Active Distribution Systems and Distributed Energy Resources

Paper 10683_2022

Improvement of high-speed railway power supply utilizing power electronic solutions – case studies

Philippe MAIBACH, Chuanhong ZHAO, Uzair JAVAID, Tobias THURNHERR

Hitachi Energy Ltd., Switzerland


Case studies

Load balancer

Real time simulator results of a STATCOM operated as a load balancer maintaining the unbalance and power factor requirements on the three-phase grid by emulating a balanced load

Use case:

In a railway supply substation, one out of two feeding transformers is out of service which creates a worst-case unbalance condition for the three-phase utility grid, as only two phases are supplying the load and the other two phases are disconnected

Static frequency converter (SFC)

Real time simulator results of the SFC for the Czech Rail, Říkovice site (50 Hz railway substation); dynamical stabilization of the catenary voltage by injecting reactive power.

Conclusion

- Traditional high-speed railway power supply concepts seem to be straightforward and cost effective, however, properties of the railway system make special solutions necessary to limit detrimental effects
- Concepts based on power electronics (SVC, STATCOM, load balancers, RPC, SFC) have their specific advantages that should be compared to classical concepts.

Use case:

Supply of railway system by back-to-back converters in multiple railway substations, allowing to get rid of neutral sections, parallel operation of the SFCs

- Single-phase catenary voltage
- Single-phase supply current to catenary
- Single-phase active power

Single-phase reactive power injected into the catenary.

- Single-phase catenary voltage (p.u. RMS)
- A holistic cost-benefit analysis in combination with a load flow study should be done for each high-speed railway power supply project to find the most appropriate solution.

http://www.cigre.org