

Study Committee C6

Active Distribution Systems and Distributed Energy Resources

Paper 10806

A Testbed-based Approach for the Resilience Assessment of Multi-Microgrids

Michael H. SPIEGEL¹, Thomas I. STRASSER^{1,2} ¹AIT Austrian Institute of Technology, ²Technische Universität Wien (TU Wien), ^{1,2}Austria ¹michael.spiegel@alt.ac.at, ²thomas.i.strasser@ieee.org

Motivation

- Detailed assessment of multi-microgrid scheduling algorithms
- Overcome limited number of scenarios and failures
- Missing low-level controls and real-time fault mitigation techniques in long-term assessments

Simulation-Based Assessment Method

- Verify schedules by independent simulations
- Series of extended power-flow computations
- Include steady-state response of devices and low-level controls
- Extensive scenario set (>300.000 scenarios)

Efficient integration into engineering workflows

Testbed Software Architecture Based on Compute Graphs

- Two main steps: Scenario generation and evaluation
- Program flow described by input-output relations (compute graph)
- Vectorized formulation to enable parallelization and reduce complexity
- Dynamic scheduling to multiple, **distributed workers** by the Dask framework

Study Committee C6

Active Distribution Systems and Distributed Energy Resources

Paper 10806

A Testbed-based Approach for the Resilience Assessment of Multi-Microgrids

continued

Extended Configuration-Based User Interface

- Text-based (YAML) syntax for efficient version control
- Include mechanism to structure complex configurations
- Dynamic reference to environment variables for simplified test automation

# The failu	re scenarios that are considered in scheduling
failure scen	narios:
_include:	"/failure_scenarios/worst-scheduling-case.yaml"
# The power	flow configuration
power flow:	
_include:	"/power_flow/full_low_level_control.yaml"

Configuration Syntax

Integrated Development and Simulation Workflow

- · Scripting-friendly software interface
- Tight integration into software development platforms
- Fully automated assessment procedures
- Precise link between software versions and test results

₩	≡ thru □ × 0, 00 110 × 000 ⊙ × (€) ×				
м	Michael Spiegel > microspit/stathed > Pipelines > #43008				
0 2	🛞 numing 🛛 Pipeline #43000 triggend 11 hours ago by 🔮 Michael Spingel 🛛 Canoni numing Deine				
D In	CNG: Eliminated the robust bounds in the perfect hybrid reference				
♦ 0 0 0 4	③ 9 jobs for the explore-robust-scheduling (quesed for 6 seconds)				
	p met				
	-e 55051an2 B				
	P3 1 related merge request IT? Draft Resolve "Siplice Robust Scheduling"				
	Pipeline Needs Jobs (2) Tests (2)				
	Group jobs by Stage Job dependencies. Show dependencies				
	() stap-mada. () () () () () () () () () () () () ()				
	Star-durite.				
*					

GITLab Integration

Advanced Debugging Facilities

- Monitoring and debugging facilities by Dask
- Progress monitoring
- Performance tracing
- Detailed simulation outputs per scenario

nwge_dicts	6938 / 21170	expand sces	4300 / 1858
when-part	3156 / 18585	product	4872 / 1858
ant_hal_news	3252 / 18585	*************	1777 / 151
inset_samp_	3658 / 18585	for separce	394 239
Rher_scen	3893 / 18585	_exec_scheds .	204/30
et_single_c .	3793 / 18585	_gat_oracle	365 / 36
et_single_c_	3893718585	Joad_single .	365736
pet_single_E	3996 / 10585		

Study Committee C6

Active Distribution Systems and Distributed Energy Resources

Paper 10806

A Testbed-based Approach for the Resilience Assessment of Multi-Microgrids

continued

Demonstration Based on Exemplary (Multi-)Microgrid

Exemplary Evaluation Results

- Operating costs and resilience metrics covering a broad spectrum of operating conditions
- Comparison of scheduling approaches on a common ground

Reflection on the Architecture

- Avoidance of global states supports parallelization
- Additional development overhead of distributed computing is well justified for extensive workloads
- Frequent assessment of code changes by rapid and automatized test execution
- Tight integration into the development toolchain by text-based inputs

- Simplified (multi-)microgrid to demonstrate engineering and validation process
- Inclusion of most essential assets
- Dynamic load and generation profiles
- Integration in state-of-the-art development platform (GITLab)
- Two algorithms assessed
 - Purely economic scheduling
 - Sufficiency-based resilience constraints
- Reduced unsupplied energy by sufficiency-based resilience constraints (42% at main-grid faults)
- 34% revenue reduction by resilience constraints

Conclusion

- Comprehensive assessment of multi-microgrid scheduling approaches demonstrated
- Scalability pushed by testbed architecture
- Engineering efficiency pushed by integrated development workflow