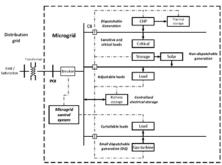


Study Committee C6

ACTIVE DISTRIBUTION SYSTEMS AND DISTRIBUTED ENERGY RESOURCES PS 3 / Aggregated DER for enhancing resilience, reliability and energy security of distribution systems Paper ID 10971

CONTROL IN A.C. MICROGRIDS: HIERARCHICAL CONTROL, TECHNOLOGIES, AND REGULATIONS - COLOMBIA

José Miguel RAMÍREZ*, Martha OROZCO*, Eduardo GÓMEZ-LUNA* and Alejandro GARCÉS** *Universidad del Valle ** Universidad Tecnológica de Pereira


Motivation

- MicroGrids MGs is a viable option to integrate Distributed Energy Resources DER
- MGs have specific electrical characteristics and operational requirements, which requires different control strategies
- This work presents initiatives in Colombia to promote MGs and control functions, hierarchical control structure, and physical infrastructure for control implementation

Approach

 CIGRE Colombia, WG C6.6 'Control and Operation of MGs', prepared a technical report from international regulations, to describe AC MGs, control functions, hierarchical control structure, and physical infrastructure for control implementation →Reference for national companies planning to implement MGs in Colombia

Microgrids

From (IEEE Std 2030.7, 2017). Group of interconnected loads and DER, with defined electrical boundaries, which acts as a single CONTROLLABLE entity with respect to the grid and can operate in interconnected or isolated mode

Colombia Situation in Microgrids

- Capacity (2020): 17.572 MW, 70% renewable, 68% hydraulic, 30% thermal. In 2023 12% nonconventional renewable sources (PV, Solar, Biomass)
- 425.000 homes without electricity mainly rural; Non-Interconnected Zone NIZ - 53% of national territory. In 2021: Installed capacity in NIZ - 295.2 MW, 91% Diesel Generators, 9% DER
- Investment of \$Us 1852 billion for universal access to electricity, 48% isolated microgrids (257) with 15% annual diesel energy (UPME – PIEC 2019-2023)

Regulations

2014 LAW 1715: Non-renewable energy integration 2015 UPME 281, CREG 024: small-scale self-generation 2016 CREG 029, 051: Demand response program 2017 XM-CND 048: Connection of inverters 2018 CREG 030, 038: Small-scale self-gen and DER 2019 LAW 1964: E-mobility. CREG 098: Energy storage 2020 CREG 170: C&O solar and wind plants 2021 LAW 2099: Energy transition, MME 40094: MG/NIZ 2022 CREG 101-001 AMI

Microgrids Hierarchical Control

- Control functions: 1) Transition between connected and island operations. 2) DER Dispatch: Gen/Load Balance. Internal gen/load events. External orders from PS; MG power references to DERs. Frequency and voltage regulation
- Hierarchical control divided into three levels

Technologies and Control Validation

- From power electronics, to wide MG monitorization→ fulfill interoperability, critical times, control algorithms, processing time, measured and controlled variables, communication protocols...
- To analyze, design and implement control with different dynamic ranges:
- IEEE 2030.8-2018 recommend the tests for the MG control system
- Real-time simulation system with a Hardware-Inthe-Loop (HIL)

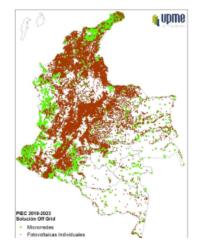
Conclusions

- Different initiatives and regulations to develop MGs in Colombia
- Hierarchical control in AC MGs allows: Integrate DG with conventional generation, f and V regulation, power sharing, buy/sell to power system, control phase imbalance and harmonic distortion
- Primary control: fast frequency and voltages regulation. High R/L ratio → virtual impedance, R, L identification; low impedance lines; lack of infinite bus in isolated operation → inertia emulation
- Secondary control restores nominal voltage and frequency, tertiary control (if any) optimizes MG operation
- Consider the interoperability of technologies and digital twins for control design and implementation

http://www.cigre.org

Study Committee C6 ACTIVE DISTRIBUTION SYSTEMS AND DISTRIBUTED ENERGY RESOURCES

PS 3 / Aggregated DER for enhancing resilience, reliability and energy security of distribution systems Paper ID 10971



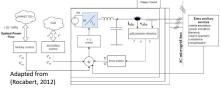
de Pereira

CONTROL IN A.C. MICROGRIDS: HIERARCHICAL CONTROL, TECHNOLOGIES, AND REGULATIONS - COLOMBIA

<complex-block> Situation in Microgrids Image: situation in Microgrids Image

Sources: Mining and Energy Planning Unit (UPME), Commission for Electricity and Gas Regulation (CREG), Ministry of Mines and Energy (MME), National Dispatch Center (XM-CND); acronyms in spanish.

In 2020, 35th Energy sustainability ranking (2020, World Energy Council) 25th Energy Transition Index (2020, World Economic Forum)


425.000 homes without electricity mainly rural NIZ - 53% of the national territory 2021 - Installed capacity in NIZ - 295.2 MW 91% Diesel Generators, 9% DG

Investment of \$US 1852 billion for universal access to electricity in Colombia, 48% isolated microgrids (257) with 15% annual diesel energy

Sources: UPME - PIEC 2019-2023 / IPSE 2021

Microgrids Hierarchical Control

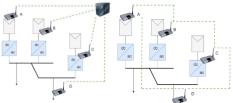
- Control functions: 1) Transition between connected and island operations. 2) DER Dispatch: Gen/Load Balance. Internal gen/load events. External orders from PS; MG power references to DERs. Frequency and voltage regulation
- Hierarchical control divided into three levels:

Primary Control:

Local measurements, fast, regulates f, V and shares or regulates P and Q, ancillary services.

Looks for a stable equilibrium, f and V ≠ nominal.

VSI: Grid-forming, grid-feeding, grid-supporting.


For synchronous generators, speed governors and automatic voltage regulators

Secondary Control:

Wide area measurements, communications are critical: Delays and loss of information, cyber attacks \rightarrow Use of real-time simulation.

Slow (m), centralized or distributed. AGC: w = nominal at steady state.

V profiles at operational limits.

Left: Central controller: PI: local→saturation, two-way communication infrastructure.

Right: Consensus-based or distributed optimizationbased, NO central controller: Channel does not compromise MG stability, allows Plug-and-play.

Tertiary Control:

Slow (m), centralized.

Coordination with PS, EV, virtual power plants. Storage.

High R/X ratio.

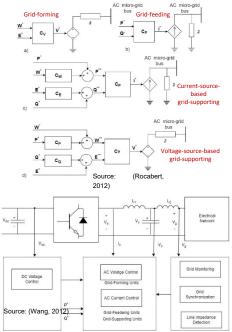
Load flow $f(V,\delta)$ non-linear/non-convex Optimal Power Flow:

. $nin_{L} C(P,Q)$ $P,Q = f(V,\delta),$ $pin_{L} \le P \le pac_{L}$, $nin_{L} \le Q \le qac_{L}$, $vin_{L} \le V \le vac_{L}$

http://www.cigre.org

Study Committee C6

ACTIVE DISTRIBUTION SYSTEMS AND DISTRIBUTED ENERGY RESOURCES PS 3 / Aggregated DER for enhancing resilience, reliability and energy security of distribution systems Paper ID 10971


CONTROL IN A.C. MICROGRIDS: HIERARCHICAL CONTROL, TECHNOLOGIES, AND REGULATIONS - COLOMBIA

Technologies and Control Validation

 From power electronics, to wide MG monitorization → fulfill interoperability, considering critical times, control algorithms, processing time, measured and controlled variables, communication protocols...

Power electronics converters:

- Power Management: DC/DC: Bidirectional Converter in a Battery Energy System, MPPT Converters, DC/AC Inverters: Front-End in AC Microgrids
- Design Aspects: Ripple, size of components, stress of devices, number of elements, control complexity.
- Challenges: Standardization and Interoperability, Modularity and Scalability, Costs and Performance
- Several Topologies depending of the purpose (Control of Voltage, Frequency, Power; Type of Power, Harmonics, MPPT, Isolation, etc).

Grid-forming: Master Control of Vc, ic slave

Grid-feeding: Master Control of P y Q, Vc o ic slave Control of Vc, ic :

α-β: Concordia, PR + harmonic rejection **d-q**: Park, PID Virtual impedance Ancillary services

Communications:

- Protections require high dynamic response, so fast transmission of signals.
- Central control requires high capacity of data transmission and quality (Technology: PTN (Packet Transport Network), protocol IEC 61850-9-2+GOOSE).
- Monitoring level must take into account demand of control, objective and velocity (Technology: Ethernet Network).
- Communication between microgrid and power system requires monitoring and control of the PCC switch (Technology: Wireless such as GPRS (General Packet Radio Service), CDMA (Code Division Multiple Access) and LTE (Long Term Evolution).

Digital Twins:

- Required to analyze, design and implement control at all three levels, with different dynamic ranges: from steady state, to fast dynamic control response in faults, protection, resynchronization and reconnection
- IEEE 2030.8-2018 recommend tests for MG control system:
 - 1. Test scenarios for central functions,
 - 2. Performance measures from applicable standards
 - 3. Test environment, from a fully simulated system to field installed equipment.

 \rightarrow Real-time simulation system with a Hardware-In-the-Loop (HIL); also used in Factory Acceptance Tests (FAT)

Conclusions

- Different initiatives and regulations to develop MGs in Colombia
- AC MGs use the hierarchy control of power systems: Integrate DG with conventional generation; frequency and voltages profile regulation (connected and islanded), power sharing, electricity sales to PS, control of phase imbalance and harmonic distortion.
- Primary control: fast frequency and voltages regulation. Usually droop control, Challenges: High R/L ratio → virtual impedance, R, L identification; low impedance lines; lack of infinite bus in isolated operation → inertia emulation
- Secondary control restores nominal voltage and frequency, tertiary control (if any) optimizes MG operation
- Consider the interoperability of technologies and digital twins for control design and implementation