



# Study Committee D1

Materials and Emerging Test Techniques

#### Paper D1-PS2-10404

### New Crosslinking Technologies for Polyethylene Insulated Power Cables

Paul CARONIA, Timothy PERSON, Jeffrey COGEN, Roshan AARONS, Caroline GRAND, Yabin SUN Dow Chemical. United States of America

#### Motivation

- Peroxide-mediated crosslinking presents cable manufacturing challenges
  - propensity for some decomposition of the peroxide in the cable manufacturing extruder which can result in premature crosslinking or scorch.
  - peroxide-mediated crosslinking generates byproducts that need to be removed from the cable in a degassing process

#### **Experimental setup & test results**

 Crosslinking Performance was characterized using a moving die rheometer

Typical Moving Die Rheometer Curve



- TS1 ~ scorch Time T90~ cure time ML ~thermoplastic viscosity MH ~ maximum cure level
- Degassing performance was characterized using TGA and gas chromatography-mass spectrometry

#### Preparation of Cable Samples for Head Space Gas Chromatography- Mass Spec



# Method/Approach

 Our hypothesis is that the challenges with peroxide crosslinking can be addressed with novel chemistry while achieving the mechanical and electrical performance expected for crosslinked polyethylene insulation.

### **Objects of investigation**

 Novel organic peroxides, crosslinking coagents and scorch retardants as well as byproduct scavengers have been studied

#### **Peroxide Crosslinking Process**









# **Study Committee D1**

Materials and Emerging Test Techniques

#### Paper D1-PS2-10404

# New Crosslinking Technologies for Polyethylene Insulated Power Cables

(continued)

### Discussion

- A unique combination of organic peroxide, antioxidant, crosslinking coagents and scorch retardants have been identified
- This unique combination has been used to develop a novel crosslinked polyethylene insulation with:
  - o Improved resistance to premature crosslinking
  - $\circ$   $\;$  Significantly reduced by products to enable faster cable degassing
  - Maintains excellent electrical performance

## Novel Additive Technology Advances Crosslinking-Scorch Balance Beyond Conventional Additive Approaches



# Novel Isopropenyl Dicumyl Peroxide Improves Degassing Performance



- 67% increase in rheometer scorch time
- Isopropenyl groups grafted to polymer to reduce amount of volatile byproducts

# New Scorch Retardant Identified 2-methoxy-4-allylphenyl allyl ether



| DCP<br>(wt%) | MAPAE<br>(wt%) | AMED<br>(wt%) | MDR MH @ 182°C<br>(dN-m) | MDR IS2@149°C<br>(minutes) |
|--------------|----------------|---------------|--------------------------|----------------------------|
| 1.61         | 0.00           | 0.00          | 5.7                      | 17.8                       |
| 1.38         | 0.10           | 0.00          | 5.7                      | 23.5                       |
| 1.42         | 0.20           | 0.00          | 5.7                      | 28.0                       |
| 1.52         | 0.40           | 0.00          | 5.7                      | 32.8                       |
| 1.34         | 0.00           | 0.33          | 5.7                      | 28.1                       |
| 1.46         | 0.00           | 0.60          | 5.7                      | 31.4                       |
| 1.55         | 0.00           | 0.80          | 5.7                      | 32.4                       |







**Study Committee D1** 

Materials and Emerging Test Techniques

#### Paper D1-PS2-10404

# New Crosslinking Technologies for Polyethylene Insulated Power Cables

(continued)

# Conclusion

- A new cross-linkable polyethylene insulation has been developed:
  - Provides a high level of scorch retardance
  - o Generates significantly lower level of peroxide decomposition byproducts
  - Has low electrical loss performance
- · Expected to lead to improved cable manufacturing efficiency with improved cable quality

## Novel XLPE Insulation has Faster Degassing Performance than Conventional XLPE

TGA measurements on XLPE Cables "Fresh" off the CV Line



Methane measurements with GC-MS on cable samples after degassing at 70  $^\circ\mathrm{C}$ 



### Novel XLPE Insulation Has Longer Scorch Time



# Novel XLPE Insulation Achieves Cure and Mechanical Properties expected for XLPE Insulation

|                          | Tests                          | Conventional<br>XLPE | XLPE 1         |
|--------------------------|--------------------------------|----------------------|----------------|
| Cure                     | Hot set (%)                    | 77 ± 7               | $81 \pm 9$     |
| performance              | (20 N.cm <sup>2</sup> , 200°C) |                      |                |
|                          | MH (dN-m) 182°C                | $2.8 \pm 0.1$        | $2.5 \pm 0.1$  |
|                          | T90 (min) 182 °C               | 3.7                  | 3.7            |
| Mechanical<br>properties | Tensile strength<br>(MPa)      | $20.3 \pm 1.4$       | $19.1 \pm 1.4$ |
|                          | Elongation (%)                 | $547 \pm 27$         | $516 \pm 31$   |
|                          | Retention (%) after            | $\geq$ 98            | ≥ 85           |
|                          | 14 days at 150 °C              |                      |                |

## Novel XLPE Insulation has Low Electrical Loss

| Insulation                        | XLPE 1           | XLPE 1           | XLPE 1           | XLPE 1<br>128°C  | Conventional<br>XLPE<br>128°C |
|-----------------------------------|------------------|------------------|------------------|------------------|-------------------------------|
| Cable<br>Temperature              | 24°C             | 61°C             | 99°C             |                  |                               |
| Ele ctrical<br>Stress<br>(k V/mm) | tan 5<br>(X10-4) | tan δ<br>(X10-4) | tan 5<br>(X10-4) | tan 5<br>(X10-4) | tan 5<br>(X10-4)              |
| 2.8                               | 0.7              | <0.1             | <0.1             | 0.8              | 0.9                           |
| 55                                | 0.6              | <0.1             | <0.1             | 0.9              | 1.4                           |
| 10.0                              | 0.6              | <0.1             | <0.1             | 1.3              | 2.6                           |
| 16.0                              | 0.6              | <0.1             | <0.1             | 2.3              | 5.4                           |
| 20.0 0.6                          |                  | <0.1             | 0.1              | 3.2              | 8.4                           |
| 25.0                              | 0.6              | <0.1             | 0.1              | 4.5              |                               |

http://www.cigre.org