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Motivation

* Epoxy nanocomposite: next-generation insulating materials
for the superior dielectric properties. (e.g., the improved
mica/epoxy insulation of large rotating machines for the loss
reduction and the higher efficiency, Figure 1)

* Nanoparticles are easy to form agglomerates during the
manufacturing process (Figure 2). It is practically difficult to
remove agglomerates completely.

* Material design guideline, i.e., the appropriate nanofiller
dispersion state and the allowable agglomerate size, has to be
clarified.

Rotor Iron core  Coil conductor

Ground-wall insulation

L (mica/epoxy insulation)
I ~

Objects of investigation

* To obtain the nanocomposite material design guideline,
i.e., the appropriate nanofiller dispersion state and the
allowable agglomerate size, for the desired insulation
performance.

Experimental method
< Nanocomposite sample >

* Epoxy: Bisphenol F type (JER806, Mitsubishi Chemical) and
acid anhydride curing agent (HN2000, Hitachi Chemical).

* Nanoparticles: TiO,, average diameter: 35 nm.

* The centrifugation process to control the agglomerate size
and the volume fraction (Table 1).

Table 1: Epoxy/TiO, nanocomposite samples.

Stator coils
Figure 1: Insulation structure of large rotating machine.

Figure 2: Nanocomposite of good dispersion (left) and with
large agglomerate (right).

Approach

* The centrifugation technique 1 (Figure 3) was applied to
control the nanoparticle dispersions. Agglomerates of the
nanoparticles with a certain size or larger were removed

by the centrifugal forces.
([1]: M. Kurimoto et. al., IEEE TDEI, vol. 28, no. 1, 2021.)

* The following properties were experimentally evaluated
as a function of the nanoparticle dispersion state.

1) AC breakdown strength, and glectroluminescence (EL,
pre-breakdown phenomenon) properties.
2) Electrical insulation lifetimes under PD degradation.
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No. Maximum agglomerate size Volume fraction
% 1 5 um 5.6 vol%
= — = 2 0.25 um 3.6 vol%
. 3 0.25 um 2.7 vol%
4 0.20 um 2.2 vol%
5 0.10 um 0.9 vol%
6 0.05 um <0.1vol%
7 Neat epoxy sample
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(diameter: 10 mm)

< Electrode configurations and measurement method >

* AC breakdown strength: sphere-sphere electrode system.
The sample thickness is 40-50 um. (Figure 4a)

* Electroluminescence (EL): observed by a PMT (Hamamatsu
photonics, P943-02) through the transparent electrode.
(Figure 4b)

* Electrical insulation lifetime: nanocomposite sample sheets
are exposed to continuous PD degradations. (Figure 4c)
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Figure 3: Centrifuging process for removing agglomerates.
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(c) Electrical insulation lifetime test.

Figure 4: Electrode configurations.
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(continued)

Experimental results/Discussion

< Agglomerate size dependence on AC breakdown strength>

* The breakdown strength of no. 1 sample (containing large
agglomerates) was lower than that of the neat epoxy, while it
increased by removing large agglomerates. (Figure 5)

* Large region of the field enhancement around agglomerates .
causes high energy electron acceleration and/or electron

avalanche, resulting in lowering the breakdown strength (2],
([2]: M. Kurimoto et. al., IEEE TDEI, vol. 28, no. 1, 2021.)

* No. 6 sample (without typical agglomerates) showed 1.2 times
higher breakdown strength than the neat epoxy. The small
amount of TiO, nanoparticles, such as 0.1 vol%, could clearly

improve the intrinsic BD strength.

< Electrical insulation lifetime >

The insulation lifetime “drastically” increased when the
maximum agglomerate size exceeded 0.20-0.25 pm
(samples no. 2 and 4). The agglomerate size is a critical
factor to determine the insulation lifetime under the
continuous void discharges (Figure 7).

The insulation lifetime can be separated into two parts
(Figure 8) 13J;
(A) times from void discharges to the tree initiation.

(B) times from the tree initiation to the final breakdown.
([3]: T. Umemoto et. al., IEEE TDEI, vol. 28, no. 1, 2021.)

Lifetime extension: delaying the tree propagation. The
agglomerates of nanoparticles larger than the critical size
were interpreted as novel physical barriers to the PDs.
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Figure 6: Relationship between the EL inception field and the AC
breakdown strength.

degradations.
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