

HITACHI Inspire the Next

Hitachi Energy

Study Committee D1

Materials and Emerging Test Techniques

Paper D1-PS1-10684

Diagnostic and testing on GIS voltage dividers for HVDC applications

Dr. Uwe Riechert, Hitachi Energy & Dr. Erik Sperling, OMICRON electronics & Andreas Dowbysch, TU Dresden

Motivation

- High activities on HVDC GIS development
- High precise measurements on composite voltages for:
 - ± DC & ± LIWV combination
 - ± DC & ± SIWV combination
- International existing standardization IEC 61869-15 does not provide information about composite voltages, how to measure and sufficient accuracy classes. Also, polarity on different test voltages are not in line with D1/B3.57 with TB 842
- Development and special testing of a universal divider, type RCR, in GIS design for online diagnostics in operation

Principles of dividers designs

- The Equivalent circuit diagram (ECD) of a universal divider needs to include serial damping resistors R_{1d,a} to prevent voltage oscillations
- The identic time constant of primary part and secondary part is vital to obtain the correct mapping of the primary voltage shape

Simplified RCR-divider ECD

- The identic time constant relation of the main parallel elements
- T₁ = T₂ = R₁ C₁ = R₁ C₂
 The identic time constant relation of the main serial elements
- T₁ = T₂ = T₃ = C₁ = C₂
 Individual ratio factor K for DC, AC and transient follows according to

$$K = \frac{\overline{U}_1}{\overline{U}_2} = \frac{\overline{Z}_1 + \overline{Z}_2}{\overline{Z}_2}$$

Mechanical design

Sectional view of a GIS divider active part

- Parallel resistors: non-inductive type with individual accuracy of 0.2%, a TC with10 ppm/K and VC with 1ppm/V
- Single capacitor elements, type All film, with individual accuracy of 2%, a TC with -250 ppm/K
- Serial damping resistors, non-inductive type with individual accuracy of 1%
- Several small units consisting of $R_{1,a}$, $R_{1d,a}$ and $C_{1,a}$ are build and connected in series.

Precise circuit diagram

 Based on impedance view of ECD, an advanced ECD illustrates all significant elements including frequency dependencies

(Upper) Impedance ECD. (Lower) Advanced ECD in element view.

Prima	ary part	Seco	ndary part
R1	Main resistance	R ₂	Main resistance
C1	Main capacitance	C_2	Main capacitance
R _{pC1}	Resistive component of tan δ value	R _{pC2}	Resistive component of tan δ value
L _{C1}	Leak inductance	Lc2	Leak inductance
R_{sC1}	Serie resistance value	R _{sc2}	Serie resistance value

http://www.cigre.org

HITACHI Inspire the Next

Hitachi Energy

Study Committee D1

Materials and Emerging Test Techniques

Paper D1-PS1-10684

Diagnostic and testing on GIS voltage dividers for HVDC applications

(continued)

- Mathematical discussion can be found in paper D1-11110 "Requirements, design principles and testing experience with composite voltages on a ±550 kV HVDC GIS voltage divider"
- Voltage error ε_0 and the phase displacement $\Delta \phi$ follows as $\omega = \frac{K \cdot U_2 - U_1}{100 \text{ pS1}}$

$$U_1$$
 U_2
 $\delta \varphi(\omega) = \arctan\left(\frac{im[\overline{PT}]}{Re[\overline{PT}]}\right) - \arctan\left(\frac{im[\overline{PT}]}{Re[\overline{PT}]}\right)$

The impact of leak inductance

- The primary leakage inductance L_{c1} is measured with a length-dependent value characteristic of 1.5μH/m for GIS solutions
- Inductive ratio K_L = ^LC1 / LC2 and must follow K
- Primary and secondary resonance point has an impact on the frequency response behavior in terms of accuracy performance

$$f_{rest} = \frac{1}{2\pi \cdot \sqrt{L_{C1} \cdot C_1}}$$
 $f_{rest} = \frac{1}{2\pi \cdot \sqrt{L_{C2} \cdot C_2}}$

fres1 < fres2	Primary resonance is dominant, voltage error has a <i>positive</i> trend	
$f_{res1} > f_{res2}$	Secondary resonance is dominant, voltage error has a <i>negative</i> trend	

Theoretical system response by varying L_{Cx} and C_x elements

 Stray- or leak inductance elements must be considered to shift the first resonance point > 1.5MHz

Electrical design parameter first performance verifications

Based on the advanced ECD and under consideration of transmission cable and burden values, the following figure and table provides the final solution

Schematic diagram of the GIS RCR-divider

Main element values of the GIS RCR-divider

Primary part		Secondary part	
R_1	2244 MΩ	R2	28.86 MΩ
C1	436.8 pF	C2	518.3 nF
R _{1D}	295 Ω	R20	258 mΩ
Rw	51 Ω	Re	2 MΩ
Cc	5.05 nF	C ₈	33 pF
v	Varistor	s	Spark gap

DC accuracy measurement from 10% up to 150% of U_{pr}

• AC accuracy measurement from 10% up to 100% of $U_{\rm pr}/\rm V2$

http://www.cigre.org

HITACHI Inspire the Next

Hitachi Energy

Study Committee D1

Materials and Emerging Test Techniques

Paper D1-PS1-10684

Diagnostic and testing on GIS voltage dividers for HVDC applications

 Frequency response measurements at 250V from 15Hz up to 30kHz

- Test setup and results of composite voltage measurements
- Principle test setup for the superposition of Impulse voltages and DC voltages. Spherical spark gap was used to decouple DC from LI

Photograph of the test circuit

 Results Unipolar, both voltages + polarity
 orange DUT: device under test, blue: reference measurement system

Results Bipolar, DC voltages – polarity & LIWV + polarity

 The same test are successfully performed with a combination of DC voltage combined with SIWV.
 Due to the significant lower frequency content, only the DC + LIWV is shown.

Conclusion

- Missing information in relevant standard IEC 61869-15 must be implemented, based on JWG D1/B3.57. Test voltage levels and polarity as well as accuracy classes for different type of voltage signals.
- When considering stray inductance phenomenon in the design process, the first natural frequency can be moved above 1.5 MHz
- The correct design and accurate calculation of the resistance value of the primary serial damping resistance allows to measure impulse voltages up to a front time of 0.84µs.
- Due to the excellent performance of the discussed type of RCR-divider, following monitoring applications are possible in the future:
 - Condition monitoring of the grid for system reliability and accelerated ageing process detection
 - Measurement of frequency-dependent network impedance
 - Detection of lightning or transient overvoltage
 - Travelling wave applications
 - Monitoring of reignition phenomenon during switching operation of circuit breakers
 - Classical partial discharge measurement in the field

