

HITACHI Inspire the Next

Study Committee D1

@Hitachi Energy

Materials and Emerging Test Techniques

Paper D1-PS1-10830

On-load tap changer monitoring and protection by extra power loss and circulating current analysis

N. Abeywickrama and T. Bengtsson Hitachi Energy Research, Sweden

Motivation

- Power transformer reliability and availability are utmost important for uninterruptible power delivery
- On-load tap changers (OLTC) are responsible for more than one third of the major transformer failures
- On-line monitoring facilitates condition-based preventive maintenance of OLTCs and transformers
- Protection against incomplete tap operations

Soft-sensing based OLTC monitoring

- Circulating current during an OLTC operation causes extra power loss over the transition resistor(s)
- Monitoring parameters: the power and duration of the additional power loss due to a tap operation

Figure 1. Operation steps of a common tap change operation scheme with two transition resistors (R)

- Detecting changes within a period of an oscillating signal cannot be performed by regular phasor analysis
- Amplitude fidelity << 1 % of nominal and time resolution ≤ 1 ms required
- Steady and oscillatory components in the power loss can be removed by subtracting the predicted loss

$$
\begin{aligned} P_{\text{tors}}(t) &= P^{H \nu}(t) - P^{H \nu}(t) \\ &= \sum_{\text{phase}} \left(V^{H \nu}(t) \, I^{H \nu}(t) - V^{H \nu}(t) \, I^{H \nu}(t) \right) \\ \Delta P_{\text{beam}}(t) &= P_{\text{beam}}(t) - P_{\text{beam}}^{p \, \text{total}}(t) \end{aligned}
$$

Figure 2. Bare total instantaneous power loss $(P_{loss}(z))$ of a 140/55kV 60MVA transformer during tap operations at no load (red), 30% (blue)
and 60% load (green)

Figure 3. Instantaneous extra power loss $(\Delta P_{\rm long}(t))$ of the tap operations shown in Figure 2 after removing the predicted loss (at no load (red), 30% (blue) and 60% load (green))

Case study 1: selector-switch OLTC

- Arcing-in-oil, selector-switch type OLTC mounted ontank of a 140/55 kV, 60 MV transformer
- About 7300 tap operation recorded over six years
- Between tap positions, subtle differences observed in mean power loss and commutation time
- Change of average commutation time associated with a shift in OLTC operation range observed

Figure 4. Commutation time of 7300 tap operations plotted against each tap position (blue – increasing and red – decreasing operations,
data offset in proportion to the load current)

Figure 5. Extra power loss of 7300 tap operations plotted against each tap position (blue – increasing and red – decreasing operations, data offset in proportion to the load current)

http://www.cigre.org

HITACHI Inspire the Next

Study Committee D1

@Hitachi Energy

Materials and Emerging Test Techniques

Paper D1-PS1-10830

On-load tap changer monitoring and protection by extra power loss and circulating current analysis

(continued)

Figure 6. Time evolution of commutation time of 7300 tap operations over six years (initial tap position designated by colors)

Case study 2: diverter-switch OLTC

- Arcing-in-oil, diverter-switch type OLTC mounted in-tank of a 140/11 kV, 40 MV transformer
- About 900 tap operations recorded over one year
- This type has only two distinct contacts, classified as 'odd' and 'even'
- No significant difference observed between odd and even operations

Figure 8. Mean power loss extracted from 900 tap operations (of a diverter-switch type OLTC) classified into odd and even operations (data offset in proportion to load current)

Incomplete tap operation protection

- Incomplete commutation lets the large power loss continue, causing overheating and most probably transformer failure
- A protection function with a reaction time substantially less than a second is required
- Energy (E), in the form of a "floating" integral of power loss, meets such stringent requirements of protection functions

Figure 9. Floating integral of the three tap operations shown in Figure 2. $T_{int} = 0.5$ s and a constant value subtracted to account for the persistent loss

- Influence of instrument transformer inaccuracies can be alleviated by subtracting a constant value
- Maximum energy vs real power should follow a parabolic shape, verified in Figure 10

Figure 10. Maximum value of energy integral as a function of transmitted power for the same 7300 operations presented in Figures 4 & 5

http://www.cigre.org

HITACHI Inspire the Next

Study Committee D1

@Hitachi Energy

Materials and Emerging Test Techniques

Paper D1-PS1-10830

On-load tap changer monitoring and protection by extra power loss and circulating current analysis

(continued)

Discussion

- Monitoring
	- Signal analysis technique indicates a higher accuracy than the scatter in estimated parameters
	- Averaging techniques can provide high enough resolution for trend detection
- **Protection**
	- Proposed protection scheme is not affected by relative instrument transformer ratio errors
	- Trip threshold can be calculated and set based on the nameplate parameters

Conclusion

- Soft-sensing based OLTC monitoring is possible using available electrical signals in modern substations
	- In most cases , no additional sensors, dedicated acquisition hardware or outage required
	- Enough precision to observe subtle differences or trends in estimated parameters
- Protection against incomplete tap operations is feasible with floating power loss integral
	- Such a protection function can be implemented in a numerical protection relay
	- Relatively high safety margin for tripping can be set due to no intrinsic time delay associated