

HITACHI Inspire the Next

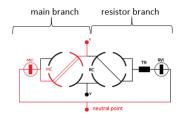
Study Committee D1

OHitachi Energy

Materials and Emerging Test Techniques

Paper D1-PS1-10831

On-load tap changer switching sequence monitoring – comparison of methods

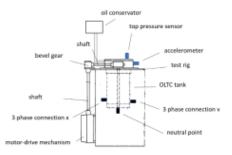

J. Schiessling¹, C. Forssén¹, N. Abeywickrama¹, N. Gustavsson², L. Lidén², B.-O. Stenestam², T. Larsson²
¹Hitachi Energy Research Sweden, ²Hitachi Energy Sweden

Motivation

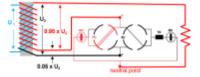
- On-load tap changers (OLTC) only moving part in power transformers, responsible for more 30% of major failures
- Switching times important indicators for degradation and incipient faults

Method/Approach

- Three periods in switching sequence
 - Main vacuum interrupter open
 - Circulating currents
 - Resistor vacuum interrupter open

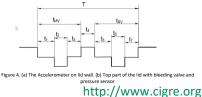

- OLTC operation simultaneously monitored by three methods
 - Vibroacoustic signal analysis
 - Voltage and current signal analysis
 - Oil pressure pulse signal analysis

OLTC Operation



Experimental setup and test objects

Diverter-switch vacuum type OLTC set-up


- 400/400 V, 12 kVA transformer with one tap step (5 %) connected to the OLTC
 - Voltage dividers and current clamps on the transformer primary and secondary

- Sensors mounted:
 - Accelerometer and a pressure sensor mounted on the lid (Figure 4)

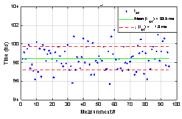
External circuit connected for reference measurement

HITACHI Inspire the Next

Study Committee D1

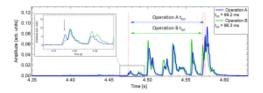
OHitachi Energy

Materials and Emerging Test Techniques

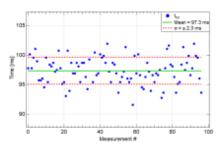

Paper D1-PS1-10831

On-load tap changer switching sequence monitoring – comparison of methods

(continued)

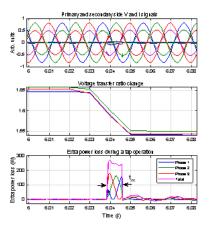

Reference switching time

• Reference total switching time of the OLTC is 98.5 ± 1.3 ms

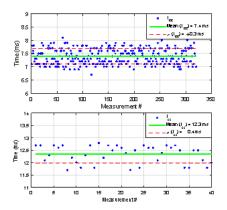


Results: Vibroacoustic method

- Vibration signals recorded at 60 kHz and high pass filtered before time extraction
- Relatively small vibration at vacuum bottle opening and its significant variation between tap operations poses a challenge for time extraction



• Peak identification gives total switching time estimation 97.3 ± 2.3 ms



Results: Voltage and current method

• Circulating current time period (tcc) extracted by extra power loss analysis

- Tap operations performed with two different mechanically adjusted settings for tcc
- Quite good absolute accuracy for tcc was achieved, e.g., 7.4 \pm 0.3 ms measured vs 7.3 \pm 0.13 ms from reference measurement

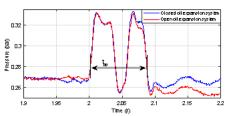
http://www.cigre.org

HITACHI Inspire the Next

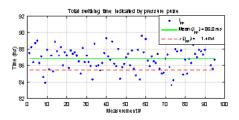
Study Committee D1

OHitachi Energy

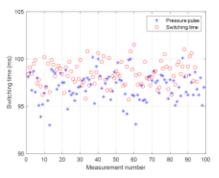
Materials and Emerging Test Techniques


Paper D1-PS1-10831

On-load tap changer switching sequence monitoring – comparison of methods


(continued)

Results: Pressure pulse method


 Two pressure peaks generated between opening and closing of main and resistor side vacuum bottles

- Total switching time t_{tot} was estimated as the time between first positive and last negative flanks
- Many recorded pleasure pulses indicated a good estimate t_{pp} (86.8 ± 1.4 ms)

Good agreement between pressure pulse and total switch time)

Discussion

- Three on-line monitoring methods to probe the OLTC switching time were compared
- Evaluation criteria
 - Robustness of analysis
 - Accuracy of method
- <u>Vibration</u> based analysis requires prior knowledge of switching pattern to extract total switching time
- <u>Vibration</u> analysis challenged by variation in vibration amplitudes in consecutive measurements
- <u>Voltage and current</u> analysis method is robust and accurate in estimating the circulating current time, but total switching time is not possible
- <u>Pressure pulse</u> method provides a good precision for the total switching time.
- <u>Pressure pulse</u> method provides confirmation of tap operation completion
- <u>Pressure pulse</u> method limited to vacuum type tap changers

Conclusions

- Voltage and current analysis and pressure pulse methods are found to be more robust in switching time monitoring than the vibration method
- All methods can achieve accuracy in ms range
- It is important to consult the manufacturer of the tap-changer for support with interpretation of results