

Supported by:

Study Committee D1

Materials and Emerging Test Techniques

Paper D1-PS2-11114

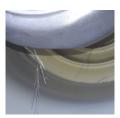
Investigations on the long-term performance of Fluoronitrile-containing gas mixtures in gas-insulated systems

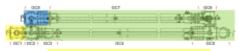
Karsten JUHRE¹, Hansgeorg HAUPT², Florian KESSLER¹, Felix GOLL¹

¹ Siemens Energy, Germany ² State Materials Testing Institute, Technical University of Darmstadt, Germany

Motivation

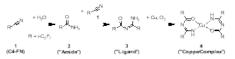
- More eco-friendly alternatives to SF₆ are currently under investigation and already installed in the grid
- Beside natural-origin gases, F-gas based admixtures were considered as potential alternatives to increase the electric strength
- Within government-supported projects the properties of different gases were investigated


Method/Approach & Test setup


- In addition to different laboratory tests, a long-term test was conducted to estimate the long-term performance of real-sized high-voltage equipment
- Outdoor-installed test setup, consisting of 420 kV GIS/GIL modules, forming a loop of ≈30 m in length
- Gas mixtures of Fluoronitrile (C4-FN, 3M Novec 4710), CO₂ and O₂ were used for this test
- GIS/GIL materials were adapted according to the outcome of material compatibility tests
- High voltage and rated current (in cycles) were applied simultaneously for 3.000 hours, including intermediate impulse voltage tests
- Gas samples were taken and analysed with FTIR and GC/MS. The gas composition was checked at the beginning and at the end of the tests.

Considered alternatives to SF₆

- Scope of research project was on F-gas based alternatives to SF₆
- Fluoronitrile (C4-FN), Fluoroketone, Hydrofluorolefines and new gases were investigated
- A gas mixture of 6% C4-FN / 94% CO₂ was chosen for the long-term test, as it was found to be of comparable electric strength as 20% SF₆ / 80% N₂ at the same pressure



100% SF₆, at 0.6 MPa, with desiccant (SF₆ type) 6% C4-FN / 94% CO₂, at 0.6 MPa, GC2+GC5+GC6 with desiccant (3 A type) 6% C4-FN / 89% CO₂ / 5% O₂, at 0.6 MPa, with desiccant (3 A type)

Test type	Tests and ratings	
Initial test	650 kV AC, 1 min 1050 kV SI, 15 Impulses 1425 kV LI, 15 Impulses	
Long-term test (first part) 1873 hours	485 kV = 2 p.u. 4000 A = 1 p.u. in cycles (17 h heating / 7 h cooling)	
Intermediate test	650 kV AC, 1 min 1050 kV SI, 15 Impulses 1425 kV LI, 15 Impulses	
Long-term test (second part) 1287 hours	485 kV = 2 p.u. 4000 A = 1 p.u. in cycles (17 h heating / 7 h cooling)	
Final test	650 kV AC, 1 min 1050 kV SI, 15 Impulses 1140 kV LI, 15 Impulses ¹	
After test	Visual inspection, analysis of materials, documentation	

¹ Limitation due to test system issues

Conclusions

- No breakdown during this long-term test, temperatures according IEC, unchanged resistance of the loop, stable C4-FN (and O₂) content
- Minor decomposition products in the gas detectable only (some amide)
- But: Solid crystalline-shaped decomposition products (amide and ligand) found at several locations
- Amide type is classified as hazardous and toxic substance, so special care in handling was required
- Crystal formation based on chemical reaction of C4-FN with gas moisture, despite dry gas conditions with desiccant; favorable formation conditions due to outdoor installation
- Crystals move in an electric field, hard to detect due to low partial-discharge intensity

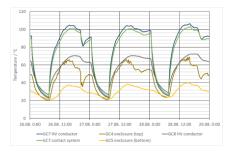
Supported by: Federal Ministry for Economic Afti and Energy

on the basis of a decision by the German Bundestag Study Committee D1

Materials and Emerging Test Techniques

Paper D1-PS2-11114

Investigations on the long-term performance of Fluoronitrile-containing gas mixtures in gas-insulated systems


(continued)

Electric performance

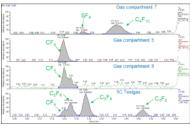
- AC voltage two times service voltage
- Long-term application for >3.000 hours
- Impulse voltage tests with rated voltages conducted
- Tests passed

Thermal performance

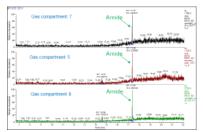
- 24 hours cycles (17 h heating / 7 h cooling) with rated current
- Additional impact due to outdoor installation
- All temperature values remained within IEC limits

Observations after test

- · After test, the test setup was opened for inspection
- At several locations two different types of crystalshaped solid decomposition products were found


Gas quality analysis

- Gas quality checks during test
- Dry conditions in gas compartments (GC) with desiccant, slightly increased humidity in gas compartments w/o desiccant
- Stable conditions during test


	C4-FN ratio (%vol) / frost point (humidity (calculated))			
	start of test	intermediate	end of test	
GC2	6.1% / -60 °C	6.2% / -49 °C	6.1% / -52 °C	
	(1 ppm _v)	(7 ppm _v)	(5 ppm _v)	
GC4	5.7% / -28 °C	5.8% / -23 °C	5.6% / -30 °C	
	(78 ppm _v)	(129 ppm _v)	(63 ppm _v)	
GC8	5.7% / -60 °C	5.8% / -48 °C	5.7% / -56 °C	
	(1 ppm _v)	(8 ppm _v)	(3 ppm _v)	

GC2: C4-FN/CO $_2$, desiccant GC8: C4-FN/CO $_2$ /O $_2$, desiccant GC4: C4-FN/CO $_2$, w/o desiccant

Small amounts (up to 100 ppm) of decomposition products were identified with GC/MS

Amide was found in all samples, with low amount (2 ppm), potentially due to vapor pressure conditions

- Further, FTIR was applied:
 - C4-FN content in line with online measurement
 - Minor amounts of decomposition products
 - C3F7H seems to be an indicator for amide

http://www.cigre.org

Supported by: Federal Ministry for Economic Aft and Energy

on the basis of a decision by the German Bundestag Study Committee D1

Materials and Emerging Test Techniques

Paper D1-PS2-11114

Investigations on the long-term performance of Fluoronitrile-containing gas mixtures in gas-insulated systems

(continued)

Material compatibility

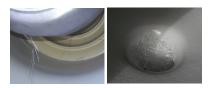
- Several materials stored in the long-term test setup
- Specific material properties were determined before
 and after the test
- No major material ageing found
- Small crystals observed on polymeric and copper samples

Physical and health properties of decomposition products

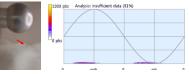
- Two different types of crystals: "amide" and "ligand"
- Sublimation of amide at approximately 20 °C under normal pressure
- Amide classified as acute toxic → safety measures recommended when handling test setups, also without arcs or partial discharges

- Sublimation of ligand at 135 °C up to >170 °C (stable under atmospheric conditions)
- Properties of ligand concerning health are unknown

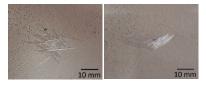
Influencing factors on decomposition


- Gas moisture, also in low ppm range
- Moisture ingress at a sealing potentially accelerated the amide formation
- Unequal temperature distribution (outdoor conditions)
- Desiccant position (in conjunction with temperature)
- Gas composition
- Presence of copper (purple dust)
- Potentially further material interaction

Tests on reproducibility


- Tests in a climatic test chamber, without high voltage
 but with current and temperature cycles
- The formation of small-sized crystals was observed, dependent on the specific conditions

Electric properties of crystals


- Electric properties are essential for the integrity of gas-insulated systems in service
- Solid decomposition products reduce the C4-FN in the gas (not significant in our test)
- Long-extended crystals broke down into smaller pieces during AC high-voltage (HV) application

- Further AC voltage HV tests + UHF PD measurement, with ligand type only (due to sublimation of amide)
- * 10-20 mm long crystals placed in a 245 kV GIS, filled with 6% C4-FN / 94% $\rm CO_2$ at 0.6 MPa

 At approximately 300 kV some crystals started to move, and an orientation of the crystals was observed; no breakdown up to 400 kV

- PD were measurable at ≥400 kV only (stronger movement and orientation in the electric field)
- As a conclusion, the detection of crystals in the electric field and its movement with PD measurements requires a very high sensitivity of the PD system

http://www.cigre.org