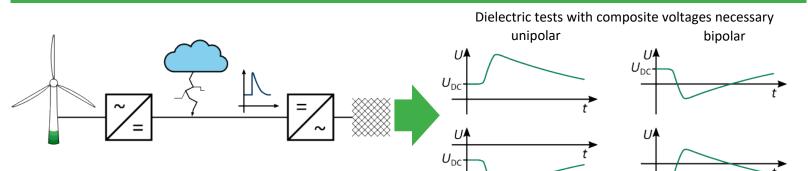


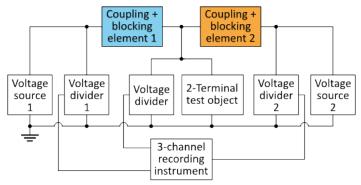
Study Committee D1

Materials and Emerging Test Techniques


Paper D1-PS1-11116

Impact of Different Blocking Elements on the DC-Impulse Composite Waveform

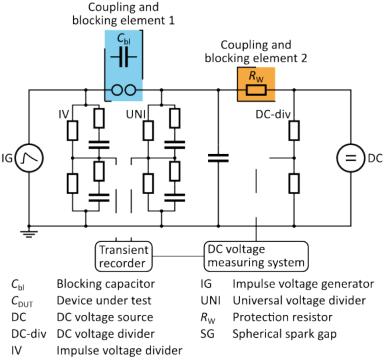
Andreas Dowbysch, Thomas Götz, Hans-Peter Pampel, Karsten Backhaus, Stephan Schlegel


Technische Universität Dresden, Germany

Motivation

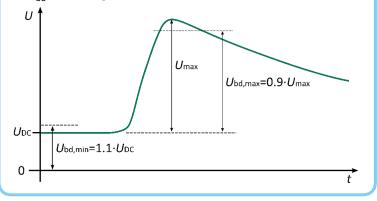
State of the Art

- IEC 60060-1 defines a general test circuit to superimpose two voltages to one test object (DUT)
- Coupling and blocking elements
- protect the respective voltage source against the voltage of the other voltage source
- must couple both voltages to the DUT and should not influence the composite voltage


• Possible coupling and blocking elements to superimpose DC and impulse voltages:

Voltage	Coupling and Blocking Elements		
	· · · · · · · · · · · · · · · · · · ·		

Experimental Techniques


• Implementation of the test circuit according to IEC 60060-1:

 $U_{\rm D}$

 Combinations of the coupling and blocking elements investigated:

 Adjustment of the spherical spark gap ignition voltage *U*_{bd} according to IEC 60052

	element 2		
Coupling and blocking element 1	R _{W1} =6 MΩ	R _{W1} =1 MΩ	
$C_{\rm bl1} = 17.5 \rm nF$	х	Х	
$C_{\rm bl2} = 11.6 \rm nF$ —	х		
SG: $d_1 = 25 \text{ cm} - 0 \text{ cm}^{25 \text{ cm}}$	х	Х	
SG: $d_2 = 10 \text{ cm} - 0 \text{ cm}^{-10 \text{ cm}}$	х		

- Tests with and without short-circuited coupling and blocking element and with and without DC voltage
- Evaluation of the parameters according to IEC 60060-1 from 10 test executions :

Test voltage U_p , peak time T_1 and time to half-value T_2

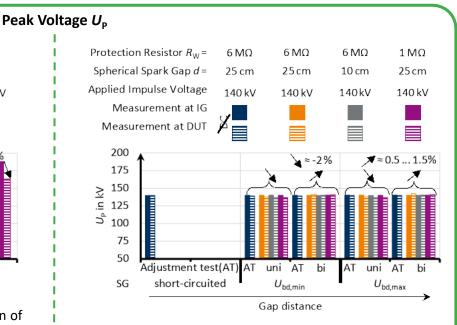
http://www.cigre.org

Study Committee D1

Materials and Emerging Test Techniques

Paper D1-PS1-11116

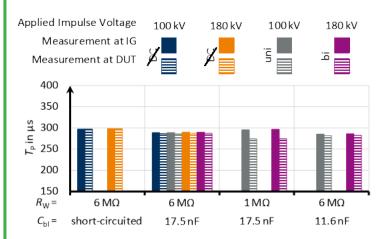
Impact of Different Blocking Elements on the DC-Impulse Composite Waveform

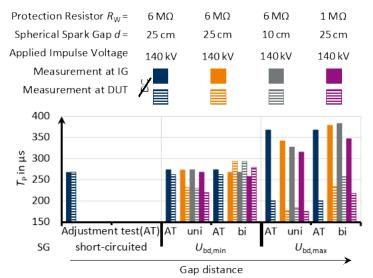

(continued)

Experimental Results

Blocking Capacitor

180 kV Applied Impulse Voltage 100 kV 100 kV 180 kV Measurement at IG Measurement at DUT 200 ≈ -13.2 % ≈-9.2% ≈-12.6% 175 ≥ ¹⁵⁰ .⊑ 125 ച് ₁₀₀ 75 50 R_W = 6 MΩ 6 MΩ 1MΩ 6 MΩ 17.5 nF 17.5 nF $C_{bl} =$ short-circuited 11.6 nF


- Utilisation of a blocking capacitor leads to a reduction of the peak value U_p at the DUT
- Applied DC voltage has no influence on the peak value
- Small blocking resistor $R_{\rm W}$ does not fulfil its decoupling task \Rightarrow further reduction of the peak value $U_{\rm P}$ at the DUT


 Deviations of U_p between IG and DUT are significantly smaller when using a SG instead of a blocking capacitor

Peak Time T_P

 Shorter peak Times T_p can be measured at the IG and DUT, when a blocking capacitor is utilized (not shortcircuited) ⇒ Smaller load capacitance because of the series connection of the blocking and DUT capacitance

• Without applied DC voltage: Shorter peak times at the IG and larger at the DUT with increasing ignition voltage of the spherical spark gap

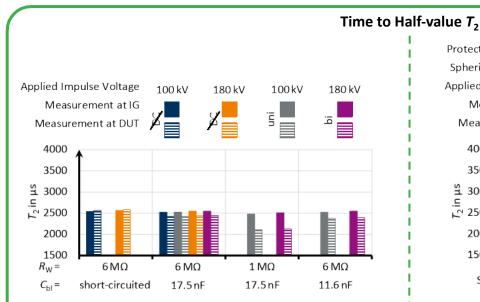
Spherical Spark Gap

- A smaller capacitance of the blocking capacitor leads to shorter peak times
- Applied DC voltage has no influence
- The small blocking resistor R_W does not fulfil its decoupling task \Rightarrow further reduction of the peak time T_P at the DUT
- Unipolar applied DC voltage: Further reduction of the peak times at the DUT
- Bipolar applied DC voltage: Increase of the peak time at the DUT
- ⇒ Reason is the different voltage behaviour at the DUT for bipolar and unipolar superposition
 - ➡ Unipolar: After ignition of the SG large steep voltage rise at the DUT
 - ⇒ Bipolar: Discharge from DC-voltage

http://www.cigre.org

Study Committee D1

Materials and Emerging Test Techniques

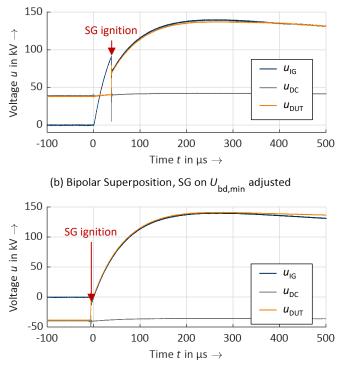

Paper D1-PS1-11116

Impact of Different Blocking Elements on the DC-Impulse Composite Waveform

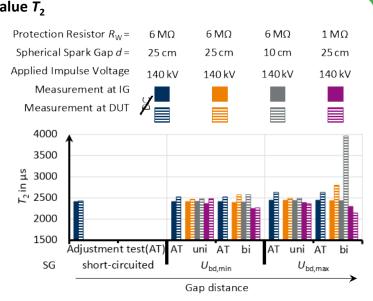
(continued)

Experimental Results (continued)

Blocking Capacitor

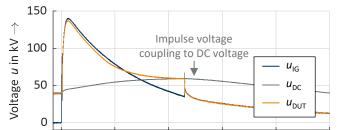


- The smaller the capacitance of the blocking capacitor, the shorter the time to half-value T_2 at the impulse voltage generator and the DUT
- With connected blocking capacitor the time to half-value T_2 at the DUT is shorter than at the IG
- Applied DC voltage has no influence
- Small blocking resistor R_w does not fulfil its decoupling task ⇒ further reduction of the time to half-value T₂ at the DUT


Selected composite voltage waveforms

Uni- and bipolar superposition with spherical spark gap

(a) Unipolar Superposition , SG on $U_{
m bd,min}^{}$ adjusted



Spherical Spark Gap

- Time-to-half-value T2 remains almost constant at the IG for all investigated sphere diameters, gap distances and protection resistors (*T*₂ = 2424 ± 33μs)
- Compared to the adjustment tests the time-to-half-value increases for unipolar and decreases for bipolar superposition of DC and impulse voltage
- Sphere diameter has no influence on the time to halfvalue T₂ (outlier for bipolar superposition because of extinguishing of the SG)

Small blocking resistor $R_w = 1 M\Omega$ and spherical spark gap

• Differences in the time parameters between uni- and bipolar superposition because of the different ignition behaviour of the spherical spark gap

0	2000	4000	6000	8000	10000
Time t in μ s $ ightarrow$					

• Coupling of the impulse voltage to the DC voltage due to too low blocking resistance

Conclusion

- IEC60060-1 time parameter adjustment should be carried out with utilized coupling and blocking element
- Blocking resistor has to be chosen large enough to not couple the impulse voltage to the DC voltage
- Steep rise of voltage is not covered by the evaluation process of the time parameters according to the standard IEC 60060-1

http://www.cigre.org