

Study Committee D2 Information Systems and Telecommunication

Paper 10616_2022

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR UNACCOUNTED ELECTRICITY CONSUMPTION DETECTION USING MACHINE LEARNING METHODS

Voltov Ilya

R&D Centers at Rosseti PJSC

Motivation

- Unaccounted electricity consumption is a significant worldwide problem.
 Total global electricity losses due to electricity theft are about \$96 billion per year.
- The main aims:
 - identifying points of unaccounted electricity consumption
 - reducing the percentage of nontechnical losses
 - reducing the decision-making time
 - creating a data warehouse
- There is no similar decision in Russia.

Experimental setup & test results

- Analysis of foreign experience (including doctoral and grant programs).
- The data used for training, validating and testing the ML models was provided by PJSC «Rosseti Lenenergo».
 - Size of dataset:

٠

- 5 years of hourly measurements
- unique customers 293 837
- Labeling of the dataset about 1500 cases of theft recorded earlier (for the classification task).
- Choosing a ML model for each type of task (classification, regression, clustering).
- Personal inspection of addresses defined by ML algorithms.

Discussion

- Results:
- clustering of objects (legal entities and individuals) - grouping objects into identical groups, for example, by type of activity and area of the object
- identification of the consumers who steal electricity
- forecasting the breakdown of the metering device
- Benefits:
 - detection of several large legal entities (unaccounted consumption) - large monetary fine
 - detection of many medium- and smallsized legal entities (unaccounted consumption)

Conclusion

- Built first of its kind the decision support system.
- ROI 1 year (for the chosen area).
- Identified the best algorithms for detection of unaccounted consumption.

Method/Approach

- Machine learning ensemble:
 - data clustering
 - C-means
 - classification task
 - CatBoost

time series forecast

- neural network LSTM
- Classic approach:
 - statistical analysis of consumer data
 - calculation of the unbalance in the power grid

Objects of investigation

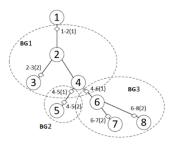
- The area of activity of one of the largest electric power companies in Russia - PJSC «Rosseti Lenenergo»:
 - > 1432 transformer substations
 - 264 381 unique individuals
 - 29 456 unique legal entities

Study Committee D2 Information Systems and Telecommunication

Paper 10616_2022

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR UNACCOUNTED ELECTRICITY CONSUMPTION DETECTION USING MACHINE LEARNING METHODS continued

Creating a data warehouse


- Two DBMS are used:
 - PostgreSQL (for descriptive data)
 - Click House (for time series)
- Special platform for event streaming:
 - Apache Kafka
- All the tools used are open source.

Data sources (integrations)

- There are two data sources:
 - > external
 - internal (customer)
 - The external data (only open sources):
 - weather data
 - descriptive data about consumer objects
 - descriptive data on the activities of legal entities
- The internal data (electric power company data):
 - topology of the power grid
 - equipment characteristics
 - cases of theft recorded earlier
 - consumption volumes
 - readings of smart metering devices

How we built the topology

- Topology is the configuration of a graph.
- Depth First Search algorithm for traversing or searching tree or graph data structures.
- Depth First Search builds balance groups.
- A balance group is a section of the electrical grid between two (or more) metering devices.

Why CatBoost, not other algorithms

• The quality is the same, the speed is greater:

benchmark – quality

CatBoost	LightGBM	XGBoost
0.39112	0.39749	0.39764

benchmark – learning speed

	CatBoost	LightGBM	XGBoost
CPU (Xeon E5-2660v4)	527 sec	4339 sec	1146 sec
GTX 1080Ti (11GB)	18 sec	890 sec	110 sec

Study Committee D2 Information Systems and Telecommunication

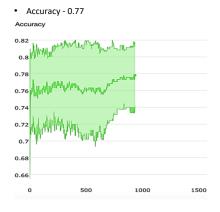
Paper 10616_2022

IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR UNACCOUNTED ELECTRICITY CONSUMPTION DETECTION USING MACHINE LEARNING METHODS continued

CatBoost

- One of the original gradient boosting algorithm.
- The issue is solved:
 - classification of the consumer who steals electricity

CatBoost Accuracy


Accuracy – 0.75

LSTM – long short-term memory

- An artificial recurrent neural network.
- The issue is solved:
 - forecasting the breakdown of the metering device

LSTM Accuracy

- The performance metric for unbalanced datasets is ROC AUC.
- LSTM ROC AUC 0.72.

Conclusion

- Built first of its kind the decision support system.
- ROI 1 year (for the chosen area).
- Identified the best algorithms for detection of unaccounted consumption.

C-means

- A form of clustering in which each data point can belong to more than one cluster.
- The issue is solved:
 - grouping objects into identical groups