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Motivation

In addition to recent advances in variable energy resources
(VER) forecasting and online capacity equipment rating, flexible
real-time control of power flows must be implemented to
ensure efficient utilization of VER over the existing grids.
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Figure 1: Functional diagram of AGC (AGC DB — database of
AGC, PID — proportional-integral—derivative controller, PF —
participation factors)

APUT(E) = ke AF(E) + AP(E)

In transmission grids, this task is handled by automatic
generation control (AGC) systems which face additional
challenges caused by the trend of VER involvement in the
secondary control. Thus, existing AGC systems need to be
enhanced to keep up with the ongoing industry changes.

Approach

The paper proposes an approach for online computation of
plant participation factors (PF) that advances power flow control
selectivity and flexibility.
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Figure 2: The algorithm for online computation of participation

factors (RTDB — real-time database, OM — optimization model,

PFE — estimator of participation factors, SE — state estimator,
PFM — power flow model, AGC DB — database of AGC)

To fit the algorithm to the particular control task, it B necessary
to set an objective function which generalized form looks as
followrs:

fpEee) = Z W+ f,(PEeE)

t

The function Is organized as a weighted sum of optimization
criteria f;{PE*"), which are defined according ta the control
task and consider economic (e.g., C5*"), technological (e.g.,
RE™), or state parameters (2.g., Pf).

The optimization criteria and their weighting coefficients wy; can
be adjusted according to the specifics of power system
charactenstics and utility's expenence. Besides, there are
seversl conditions that should be used as constraints:
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To meet the performance requirements impaosed by VER, the
paper proposes to replace the cormentional Mewton-Raphson
(M-R) power flow solwer with machine learning (ML) technigues.
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Figure 3: Proposed pipeline for power flow calculation by ML
model (FS — feature selection component, FF — feature filter,
MT — model training tool, MP — ML-based solver, SE and PFM

— state estimator and power flow model as in Figure 2)

Contribution
The main contributions of this paper are the following:

* the online approach for optimal computation of PFs was
developed to boost selectivity and flexibility of existing AGC
systems;

* the multi-task objective function was proposed to estimate
PFs, and its feasibility was proved for conventional and
advanced power flow control tasks;

* the densely connected NN was built as a power flow model
of real 60 GW interconnection and adapted to the
considered AGC tasks that made power flow calculations
faster than with the Newton-Raphson method;

¢ Lasso regression was suggested and implemented as a
feature selection tool to boost the accuracy and decrease
inference time of the ML-based power flow model.
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Experiment Setup

The power flow model representing one of control areas of the
Russian power system with 60 GW of thermal-hydro generation
capacity is used as a testbed. The model consists of 464 nodes
and 742 branches.
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Figure 4: Simplified structure of the test system
Some part of the capacity of existing generating nodes was
substituted with wind power plants (WPP1, WPP2, and WPP3)

having respectively 600, 600, and 300 MW of installed capacity
and assigned for providing regulating reserves.
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Figure 5: Change of WPP outputs within the operating day

Since hydropower plant (HPP) reserves are mostly defined by
water use rules or climate conditions, they change insignificantly
within the operating day. Thus, up and down reserves for each
HPP were assumed to be 50 MW in all experiments. In addition,
it was assumed that WPPs can use 10% of their available active
power output to ramp down under the AGC commands.

Conventional Power Flow Control

The task of PFs estimation for power flow control over flowgate
Fuis considered here, In the control area, the AGC stem
commands two hydropower plants [HPFy and HPP:z} and three
wind power plants (WPPy, WPPz, and WPP3), The Newton
Raphson method was applied for power flows calculation as a
standard approach used in the industry,

To fit the algarithm to this conventional control task, the
follpwing ohjective function was formulated:

FIPEE) = w, « F, (PE*) + w, « o (PE"T)
fu(Peen) =[PP — (R + APEL ]

=[P = [[kg o (P=om — PE )|

The average number of power flow computations necessary to
find PF values in this case is 17541. As a result, the time of PF
estimation is about 251.04 s.
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Figure 6: PF values of HPPs and WPPs commanded by AGC

Power Flow Control Considering Adjacent

Lines Overload

To enhance the AGC system selectivity, It is worth to account
power flows over adjacent branches with limited transfer
capability that may help to avoid their sverlaads during the
control process. To release this type of control in the considerad
test systemn, It 1s proposed toadd a third component 5 (PE0)
with awelghting coefficlent wy to the ohjective function above:

3
FPPm) =) i fAPP)
fu(Pe<) = [P — (PR + APTL )|
F2(P%*=) = [[kg = (P& — PED )l

FalPee=) = |PR2 — P22

The experiment shows the results of BF calculation with three
values of wy — Wy, Wyg, Wy such as:

02wy, <wgg < Wy
The average number of power flow computations necessary to

calculate optimal PF values in the considered experiments is
18484. Thus, PF estimation time is about 253.33 s.
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Figure 7: PF values of power plants commanded by the AGC system with three different values of wy (A —0,B —w,,, C —wy.)

Use of Machine Learning Based Power Table I: Performance comparison

Flow Estimator Exp. Ne Powelrflow Numbgr of Time, s
To speed up power flow calculations and hence the PF solver iterations

estimation process, the paper proposes to replace the ! N-R 17541 251.04
conventional N-R power flow method with ML model. This I N-R 18484 253.33
section demonstrates an experiment of PF estimation using ML- " NN 24206 30.18

based power flow solver for the same task of power flow

control over flowgate F1 as considered earlier. The time of power flow computation with the proposed NN

model is 1.1 ms that makes it 11 times faster than in case of N-R

The densely connected neural network (NN) was chosen as a algorithm usage.

power flow estimator. The brief information of the built model:

. i HPP: HPP;
* Predicted value is a power flow over the flowgate F1. PIE, Y — WPPI — WPP: WPP:
* Feature vector is a set of nodal injections filtered with the
Lasso regression algorithm. 0
* Training dataset contained 500 000 power flow cases (60% -1
— training set, 20% — validation set, and 20% — test set). -30
* Hyperparameters: two hidden layers, Leaky ReLU activation -45
function with slope 0.2, Huber loss function, Adam ~60
optimizer. b
L h
The mean absolute error of the trained model predictions on 0 3 6 9 1215 18 21 24
the test dataset is less than 0.03 MW. Figure 8: PF values of HPPs and WPPs commanded by AGC (use

of NN model for power flow computation — solid lines, use of
the N-R algorithm — blurred lines)
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