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SUMMARY 

 
Accidents with rotating machines, such as wind turbines and hydro generators, caused by factors such 

as weathering, internal defects, or others, can lead to great losses not only of a financial nature, but also 

of a human and environmental nature. Because of this, the concern about the condition of the machines 

and their operating context has risen and have become increasingly relevant in recent decades, 

intensifying research in several areas related to the problem, such as their structures and compounds. 

However, as much as the compounds, the design and the manufacturing process of rotating machines 

can improve due to these researches, all components still suffer from several failure modes, in addition 

to possible random failures, related to defects caused by the aging of the machine or due to operating 

conditions not foreseen in the project. 

 

Thus, ensuring the proper functioning of this equipment is an extremely essential service for the 

electricity sector. Therefore, it is increasingly necessary the development of new techniques and tools 

to support maintenance and asset management teams in identifying defects in rotating machines that are 

still in an incipient stage, enabling these teams to better support decision making, in order to meet the 

utility’s organizational objectives more efficiently. 

 

In the specific case of wind generators, a very specific and commonly found business model is also 

added to this context, in which the manufacturer of the wind turbines fully takes care of the park and 

machine maintenance during their warranty period. This model is largely motivated by the fact that 

large-scale adoption of this generation technology is relatively recent, limiting the availability of 
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professionals and specialized knowledge. As the parks' original warranty periods are coming to an end, 

utilities often have a need to take on not only the maintenance of equipment, but also the full 

consequences of failures. 

 

In order to address these challenges and needs, this work is developing a methodology to monitor and 

diagnose online the main failure modes of wind turbines and hydro generators through the use of 

maintenance history and data from the pre-existing sensors in the machines, often already connected 

and having data collected in the plant's SCADA system, associated with advanced statistical techniques 

and artificial intelligence. This methodology is being coded in open Python language on an asset 

management platform, an environment that allows the native integration of intelligent algorithms with 

maintenance order data, malfunction registration, registration, and sensor data in real time. 

 

The methodology aims to support the maintenance engineering and asset management of the generation 

utility with the objectives of increasing safety and reliability, optimizing maintenance resources and 

reducing the loss of revenue due to unavailability of the machines. 

 

This work will present the operation method of the developed methodology, going through the steps 

listed below: 

 

1. Acquisition of sensor data - such as temperatures, load currents, power consumption of auxiliary 

motors, speed, vibration, voltage, angle, and power of different parts of the machine 

2. Pre-processing, sanitization, and extraction of characteristics from the sensor data, 

3. Inference process by machine learning models (Machine Learning) and advanced statistical 

algorithms and, finally, 

4. Analysis of the result and generation of the diagnosis. 

 

The basis on which the methodology was developed is an exploratory analysis carried out on the data to 

find cause and effect correlations between the main failure modes of the machines and the data coming 

from the sensors, subsidizing the extraction of characteristics and the efficient creation of models. 

 

To evaluate the effectiveness of the developed system, a pilot application of the methodology and 

intelligent software is being carried out on 210 wind turbines from two different manufacturers and 3 

hydro generators in Ibitu Energia. 

 

The work is being developed within the scope of the ANEEL R&D Project 0119, titled Intelligent 

System for Optimized Management of Wind Turbines and Hydro Generators. 
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1. INTRODUCTION 
 

Accidents with rotating machines, such as wind turbines and hydro generators, caused by factors 

such as weathering, internal defects, or others, can lead to great losses not only of a financial nature, but 

also of a human and environmental nature. Because of this, the concern about the condition of the 

machines and their operating context has risen and have become increasingly relevant in recent decades, 

intensifying research in several areas related to the problem, such as their structures and compounds. 

However, as much as the compounds, the design and the manufacturing process of rotating machines 

can improve due to these researches, all components still suffer from several failure modes, in addition 

to possible random failures, related to defects caused by the aging of the machine or due to operating 

conditions not foreseen in the project. 

Thus, ensuring the proper functioning of this equipment is an extremely essential service for the 

electricity sector. Therefore, it is increasingly necessary the development of new techniques and tools 

to support maintenance and asset management teams in identifying defects in rotating machines that are 

still in an incipient stage, enabling these teams to better support decision making, in order to meet the 

utility’s organizational objectives more efficiently. 

In the specific case of wind generators, a very specific and commonly found business model is 

also added to this context, in which the manufacturer of the wind turbines fully takes care of the park 

and machine maintenance during their warranty period. This model is largely motivated by the fact that 

large-scale adoption of this generation technology is relatively recent, limiting the availability of 

professionals and specialized knowledge. As the parks' original warranty periods are coming to an end, 

utilities often have a need to take on not only the maintenance of equipment, but also the full 

consequences of failures. 

In order to address these challenges and needs, this work is developing a methodology to 

monitor and diagnose online the main failure modes of wind turbines and hydro generators through the 

use of maintenance history and data from the pre-existing sensors in the machines, often already 

connected and having data collected in the plant's SCADA system, associated with advanced statistical 

techniques and artificial intelligence. This methodology is being coded in open Python language on an 

asset management platform, an environment that allows the native integration of intelligent algorithms 

with maintenance order data, malfunction registration, registration, and sensor data in real time. 

The methodology aims to support the maintenance engineering and asset management of the 

generation utility with the objectives of increasing safety and reliability, optimizing maintenance 

resources and reducing the loss of revenue due to unavailability of the machines. 

This work will present the operation method of the developed methodology, going through the 

steps listed below: 

1. Acquisition of sensor data - such as temperatures, load currents, power consumption of auxiliary 

motors, speed, vibration, voltage, angle, and power of different parts of the machine 

2. Pre-processing, sanitization, and extraction of characteristics from the sensor data, 

3. Inference process by machine learning models (Machine Learning) and advanced statistical 

algorithms and, finally, 

4. Analysis of the result and generation of the diagnosis. 

This article is divided as follows: in the first chapter, an introduction is presented. In the second 

chapter, the methodology applied to wind turbines is described, and the results of this methodology are 

presented in real cases. In the third chapter, the methodology applied to hydrogenerators is presented, 

and a case study is presented using data from the literature. In the last chapter, the conclusions of this 

work are presented. 

 

2. WIND TURBINE METHODOLOGY 

2.1 DATA DESCRIPTION 
A three-year period of data from sensors extracted from the wind turbine SCADA system was 

used to carry out this work. The data was organized by entity model, where each entity corresponded to 

a wind turbine, and the data of this entity corresponded to the values acquired by the machine sensors. 

In total, 23 wind turbines were used, each of which had data from 609 attributes related to the 

sensors. Each sensor transmits machine information to the SCADA system, which records the database 
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every 10 minutes. For each magnitude measured by the sensors, 4 different calculations are sent: 

maximum, minimum, mean, and standard deviation of the last 10 minutes, in order to represent a 

probability distribution curve for the corresponding magnitude. 

Along with data from the sensors, machine unavailability data over the years 2016 to 2018 was 

used. This data contained the machine that suffered the outage, the time when it occurred, the duration 

of the outage, and the affected system. To simplify the model, the pipeline presented in this article 

handles unavailability caused only by the pitch control system, the one that suffered from more outages. 

In this work, only the stops that occurred due to a defect in the pitch with outages of more than 

one day were used. This filter was applied because downtimes of less than one day can be resolved by 

resetting the machine, not requiring the intervention of the maintenance team. In the data, there were 

1,326 outages caused by a defect in the pitch system. 

 

2.2 FAULT DETECTION PIPELINE 

The fault detection pipeline is described in Figure 1 and consists of the data processing stage, 

followed by feature engineering, model selection, hyperparameter optimization, and evaluation.  

 

Figure 1 – Fault detection pipeline diagram 

Initially, it is performed a feature selection based on correlation. This process aims to eliminate 

features highly correlated, keeping only uncorrelated features. This intends to avoid overfitting and 

training problems for some models that do not behave well with highly collinear features. After that, it 

is performed the extraction of temporal features such as lag and trend using the tsfresh library [1]. In 

this work, 3 windows were used for the lag and trend. To move a team to carry out an intervention on 

the wind turbine requires at least two days, thus, the values of the selected windows were one week, 

three weeks, and six weeks. These windows were chosen because they corresponded to three different 

time intervals, the first window being considered a small-time interval, the second a median, and the 

third a large one. 

After the feature extraction, a selection of the best features is performed to predict the remaining 

time. In this work, a value of k equal to 150 was used. Finally, with the remaining 150 features, a 

Sequential Feature Selection (SFS) process is performed. Those features that do not significantly change 

the result will be removed. In this work, after the SFS process, only 81 features remained. 

Though other models were tested, this work presents the results obtained with an optimized 

Ridge Regression [2]. The ratio between train and test data was 90/10%. The evaluation consisted in 

analysing the learn curve analysis (LCA), R-squared, mean absolute error and the predictions plots. 
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2.3 RESULTS, DISCUSSION & CONCLUSION 

 
The pipeline presented in this work focused on time series feature extraction to build a strong 

model that determines the number of days left before a failure in the pitch control system of a wind 

turbine occurs. In other words, a regression problem. 

The tests made for the purpose of this work used data from the wind turbine ICD13. It followed 

the pipeline previously described. 

For the training metrics, R-squared was 0.98, which means that only 2% of the data cannot be 

explained by the model. In Figure 2, it is shown two periods of time from ICD13, with the real data 

(blue) and the predicted time to fault (red). The behaviour seen in the graphs reassures us that the metrics 

presented are real and that the predicted values follow the pattern of the real ones. 

 

 
Figure 2 – Prediction Graph of 2016 from ICD13 (Training Data) 

 

The learning curve, presented in Figure 3, helps to understand how well the model is adjusted 

to the data. It is shown that the performance of the model in both the train and cross-validation data have 

a mean absolute error close to zero. The minimum difference between the metrics indicate that the 

features selected to train the model represent the data. 

 
Figure 3 – Learning Curve of the model 
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As for the testing metrics, the R-squared value above 1 represents an abnormal case, has no 

logical meaning, and may result from the small sample size. On the other hand, Figure 4 shows that the 

predicted values are able to follow the real ones. The prediction only differs slightly from the time to 

failure close to the outage. 
 

 
Figure 4 - Prediction Graph of 2016 from ICD13 (Testing Data) 

This being said, it is possible to conclude that the pipeline proposed in this paper is capable of 

predicting the time to failure of a wind turbine. For future work, it is interesting to experiment with 

models with more generalization capability, making it possible to have only a couple of models for an 

entire wind plant. Some points should be noted about the approach used in this work: when the model 

is getting closer to the failure point, its error increases. That happens due to same reasons. The first one 

is the window used for training: because the window used for training are equal or bigger than one week, 

the model doesn’t prioritize the knowledge of data closer to the failure date. To address this problem, 

smaller windows should be used, or another model must be created to predict end point failures. The 

second one is that features that matter for long term prediction can be different for features considering 

short term prediction. Also, the data resolution matters in this case. New studies are being conducted in 

order to clarify these points and will be presented in a future article. 

  

3. HYDROGENERATORS 

 
In contrast to wind turbines, fault/defect annotation is uncommon in hydrogenerators. It signifies 

that only a limited amount of data exists to link sensor measurements to fault/defect events. This fact 

turns the problem into a hard-to-solve machine learning problem due to the small label quantity. In this 

case, non-supervised machine learning can be used to detect uncommon patterns in signals. But the link 

between the sensors and the faults are still missing. To address this problem, this initial study was started 

with a specialized Bayesian network which will be in the future connect to Anomaly detection models, 

in order to detect changes in signals and predict what these changes probably mean in terms of machine 

components. In this way, specialist systems and Anomaly Detection Systems will create a set up for the 

detection of incipient faults in hydrogenerators, overcoming Anomaly Detection and Specialists 

Systems problems that make their application or condition monitoring hard. The probabilities were set 

up by specialists in the area and evaluated against fault data found in the literature. 

 

3.1 PROBABILISTIC SPECIALIST SYSTEMS 

 
Stevens, in [3], defines expert systems as machines that think and reason as an expert would in 

a given domain. For example, an expert medical diagnostic system would request as input the patient's 

symptoms, test results, and other relevant facts and, using them as indicators, it would search its database 
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for information that could lead to identification of the disease. Furthermore, an Expert System not only 

performs traditional computer functions to handle large amounts of data, but also manipulates that data 

in such a way that the output is a meaningful answer to an unspecified question. 

An expert system is basically composed of two parts: a knowledge base and an inference 

mechanism. The knowledge base is where all the specific knowledge about the domain of a given 

problem is stored. For example, in a medical application, the knowledge base would contain all the 

information about the relationship of symptoms and diseases. The inference mechanism is the set of 

algorithms to process the knowledge stored in the knowledge base, along with any other specific 

information available about a given application.  

 

3.2 KNOWLEDGE BASE 
 

There are many knowledge base types that go beyond the scope of this work. In this work, we 

will use the Relevant Symptoms Model Independent, which is a simplification of the Independent 

Relevant Symptoms Model [4]. In this simplification, it is assumed that the failures are independent of 

each other and the symptoms are independent of each other but dependent on the diseases. Furthermore, 

sets of symptoms relevant to each failure mode are defined; that is, not all symptoms are relevant to all 

types of failure. Figure 5 depicts this model, in which only some sets of symptoms are connected in each 

type of failure, for example, only symptoms S1 and S2 are relevant for failure f1. 

 

 

 
Figure 5 - Independent Relevant Symptoms Model 

  

Considering that S1, ... , Sri are relevant symptoms for the fault fi and that the remaining 

symptoms Sri + 1, ... , Sn are irrelevant, the conditional probability distribution is calculated by Equation 

1. 
Equation 1 – Desease Probability 

 
 

From Equation 1, we have that for the calculation of the conditional probability p (fi | S1, ..., 

Sn) is used only as marginal probabilities p (fi) for all possible values of F, as conditional probabilities 

p (Sj | fi ) for each combination of F-value and its relevant symptoms and the probability pj for each f-

value that has at least one irrelevant symptom. Thus, in a scenario with m possible failures in binary 

symptoms, the required number of parameters is m - 1 + n - ai = 1mri, where ri is the number of 

parameters relevant to a failure and the number of factors relevant to all failures. 

 

3.3 MODEL 

 

In order to model a Probabilistic Specialist Hydrogenerator Failure Diagnosis System, a critical 

task is to analyze the types of failures, their characteristics and associated hydrogenerator systems. 
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Thus, an extensive survey of failure data for hydrogenerators present in the literature was carried 

out in this work, where the main failure modes of the equipment, the main failure characteristics, their 

associated alarms and the main systems of the hydrogenerator affected by the defect were identified. 

The data collected were validated by a group of specialists in hydrogenerator maintenance with years of 

experience in the area. 

The data collected defined the relationship between 10 (ten) symptoms of the hydrogenerator 

(which are: Undervoltage, Overcurrent, Heating, Vibration, Noise, Harmonics, Short-circuit, 

Overspeed, Underspeed and Instability) with 6 (six) different failure modes (Stator Insulation Failure, 

Fatigue, Speed Regulator Failure, Cavitation, Bearing Corrosion and Cooling System Sub-cooling). The 

evaluated Failure Modes cover some of the main machine systems: Generator, Turbine, Bearings and 

Cooling System. 

Thus, the conditional probabilities p(fi|S1, S2, ..., S10) were then calculated and the Independent 

Relevant Symptoms network structured. A part of the network, for two Failure Modes and four 

Symptoms, is shown in Figure 6. 

 

 
Figure 6 – Case study 

 

3.4 CASE STUDY 

 
For the evaluation and validation of the model, a case study of the application of the probabilistic 

expert system for the diagnosis of hydrogenerators developed was carried out. Four failure cases found 

in the literature were evaluated by the model, as follows: 

In [5] a case of failure in the Cooling System of a hydrogenerator is presented. In (14), a failure 

of the type Corrosion in the machine bearings is presented. In both cases, the failures were preceded by 

an increase above the normal temperature of the hydrogenerator, that is, by a symptom of heating in the 

equipment. Presenting this symptom to the Expert System, we have a 58% probability of the machine 

presenting the failure mode Sub-cooling in the Cooling System and 39% of presenting Corrosion in the 

Bearings. The other failure modes evaluated had less than 1% probability. With that, we can conclude 

that for this case the model presented a satisfactory result, indicating, in the presence of the Warming 

symptom, much higher probabilities for the failures reported in the literature than for the other evaluated 

failures. 

In [6] a case in which the hydrogenerator presented Overspeed is presented. This overspeed 

indicated a failure in the hydrogenerator speed regulator. As in the previous cases, simulating the 

Overspeed symptom in the developed model, we have an indication of the system of 89% probability of 

the hydrogenerator presenting Speed Regulator Failure. The second most likely failure was Cavitation, 

at 6%. The result obtained for this test was also satisfactory, indicating a much higher probability for 

the failure presented in the reference in relation to the other failure modes. 
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Finally, in [7] we have a case of failure in the stator insulation that had as symptoms the presence 

of harmonics and a short circuit between the turns of the hydrogenerator. For these symptoms, the expert 

system had a 55% probability of the machine having the failure mode reported in the reference. For this 

case, two other failures stand out, being Speed Regulator Failure, with 21%, and Fatigue, with 17%. 

However, even though the probability of these failures is reasonable, the probability of the machine 

presenting a Stator Insulation Failure was much higher. We can conclude then, that for this case, the 

performance of the model was also satisfactory. 

This is shown in the table below: 

 
Table 1 – Study case results 

Symptoms Real defect Predicted defect 

Overheating Cooling system failure Undercooling (58%) and 

Corrosion in bearings (39%) 

Overheating Corrosion in Bearings 

 

Undercooling (58%) and 

Corrosion in bearings (39%) 

Overspeed Speed regulator failure Speed regulator failure (89%) / 

Cavitation (6%) 

Harmonics and short-circuit Stator Insulation Failure Stator Insulation Failure (55%), 

Speed Regulator Failure (21%) 

and Fatigue (17%) 

 

 

4. CONCLUSION 
 

This work presented two methodologies for condition diagnosis in wind turbines and 

hydrogenerators. The two methodologies differ in their approach, the first using machine learning and 

the second adopting an expert probabilistic system. For wind turbines, the results showed that the 

methodology was able to learn to identify the turbine failure period. The test results proved to be 

promising, demonstrating that the model understood the wind turbine's failure mechanism. However, 

when the moment of occurrence of the defect approached, the error of the predicted model increased. 

This is an indication that a short-term model could help to solve this problem. In hydrogenerators, the 

result was also promising, correctly identifying the defects of the 4 analyzed cases extracted from the 

literature. Both models developed for aero and hydrogenerators can be extended for any type of defect 

or fault. Furthermore, this work demonstrated the possibility of creating failure predictive systems in 

the presence of labels and in their absence, obtaining satisfactory results in both cases. 

The work is being developed within the scope of the ANEEL R&D Project 0119, titled 

Intelligent System for Optimized Management of Wind Turbines and Hydro Generators. 
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