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SUMMARY 

The induction motor (IM) certainly is the most implemented electrical machine in low voltage 

industrial applications. In order to extend its useful life, advanced techniques for predictive maintenance 

are required, mainly based on vibration data analysis, stray flux analysis, and advanced current analysis. 

Development of this kind of techniques is essential to not only prevent undesirable failures, but also to 

avoid unnecessary maintenance stops. 

Many IM failures take place in the bearings, so they are critical elements for the machine. Nowadays, 

the vibration data analysis is the most typical technique used for bearing fault detection. However, 

advanced current analysis provides some advantages with respect to other diagnosis methods. Firstly, it 

is non-invasive, which means that current can be measured directly in the electrical panel; secondly, it 

can be applied during any operation scheme of the motor; and last but not least, it requires lower 

computational power and cheaper measurement equipment. 

Advanced current analysis for IM condition assessment can be performed by two main methods, 

depending on the regime in which the analysis is applied. On the one hand, the classical technique is 

called Motor Current Signature Analysis (MCSA) and it is applied in steady state regime. On the other 

hand, there is the Advanced Transient Current Signature Analysis (ATCSA), which is applied in 

transient regime. Although the latest technique has already obtained satisfactory results, it is still under 

development. 

The aim of this work is to develop an intelligent tool for bearing fault detection in IM, by combining 

the MCSA technique with machine learning algorithms for automated diagnosis. A test bench is 

designed to obtain the required IM measurements. MCSA technique, which is based on the Fast Fourier 

Transform (FFT), it is used to calculate the current harmonic spectrum, providing the fault patterns. 

Then, a supervised learning process is carried out through the application of Support Vector Machine 

(SVM) algorithm. The whole tool process has been programmed in Python environment. 

Moreover, the developed tool is integrated in an Application Programming Interface (API), from 

where users can upload the motor current measurement, obtaining the bearing condition. Therefore, this 

API enables a remotely and effective monitoring for the IM bearings. 

 

KEYWORDS 

Induction motors, bearing fault detection, MCSA, SVM algorithm, machine learning, automated 

diagnosis.  

 

 

       10862     Session 2022  
A1 - ROTATING ELECTRICAL MACHINES 

PS2 / Asset management of electrical machines 

mailto:guillem.gil@ite.es


  2 

 

 

 

 

1. INTRODUCTION 

 
Electric motors are core elements in many industrial processes. According to some works [1], these 

machines can demand more than 40% of the energy generated in an industrialized country. Moreover, 

their use, which has been mainly focused on the industry, has recently expanded toward other sectors 

that are crucial for the sustainable development of today societies, such as electric vehicles. All these 

facts give an idea of the paramount importance of these machines and of their massive utilization.  

The occurrence of failures on an electric motor can have very negative repercussions both on the 

reliability and on the efficiency of the industrial process in which it takes part: on the one hand, the 

presence of an unexpected fault may yield motor outages, causing undesired interruptions of the process 

with negative consequences (production downtimes, unplanned delays, repair costs…). On the other 

hand, the presence of failures or anomalies in the machine, even if it does not lead to immediate 

catastrophic effects, has a negative impact on the motor efficiency since, as previous works have proven 

[2], defects and anomalies in the motor increment its losses, yielding reductions in its efficiency. Thus, 

it becomes crucial to develop reliable systems to properly determine the health of electric motors. 

IM are the most common electric motors typology in industry, since these are robust and reliable 

machines, and their cost is lower compared to other typologies. Despite this, these motors are prone to 

suffer different types of faults that have been deeply analysed in the literature. Among them, stator 

winding insulation faults and bearing failures are the most frequent failures, as several surveys have 

reported [1], [3]. These two faults may amount to near 80% of the total failures that can happen in an 

IM. Therefore, it becomes of capital importance to develop reliable condition monitoring approaches 

that are suited for the early diagnosis of those failures. Bearings are relevant elements that are subjected 

not only to their own degradation but also to those caused by the presence of other faults and anomalies 

in the machine (misalignments, eccentricities, rotor unbalances…), a fact that increments the stresses on 

them. Bearing faults may be caused by a diversity of causes, namely: defective mounting or assembly, 

overloads, lubrication problems, circulation of bearing currents…[4]. Problems in the bearings can even 

lead to a forced motor outage due to rotor-stator contacts, implying costly repairs. Therefore, it is 

essential to detect these faults when they are in their early stages of development. 

Vibration data analysis is the most common technique to diagnose bearing faults. However, in some 

cases, vibration analysis is not conclusive for bearing condition monitoring purposes due to interference 

of other components caused by the load or other elements. In other cases, vibration analysis is not 

feasible due to the impossibility of installing accelerometers in the corresponding application. Over 

recent years, the analysis of motor currents has revealed itself as an excellent alternative to detect bearing 

failures [5], [6]. It has been proven that different bearing faults yield specific components in the Fourier 

spectrum of the current signal demanded by the motor. The identification and evaluation of the 

amplitudes of those components enables to determine the level of bearing failure. This approach is 

known as Motor Current Signature Analysis (MCSA) [1]. More recently, methods based on analysis of 

transient currents (ATCSA) have revealed as an interesting alternative to complement the MCSA 

conclusions in certain cases or faults for which MCSA analyses may lead to controversial results [7]. 

One pending issue of these methodologies is the fact that the diagnosis still relies on the necessity of a 

user that interprets the results of these methods and identifies the corresponding harmonics or patterns 

linked with the fault. This constraint limits the possibility of implementing these methodologies in 

autonomous systems aimed to determine the bearing condition. This work is intended to overcome these 

limitations by presenting an intelligent system for bearing fault detection in IM. The system combines 

the application of the MCSA technique with machine learning algorithms that enable the automatic 

identification and assessment of the fault harmonics, reaching a diagnostic conclusion without need of 

user intervention. The results obtained after application of the system to a specific testbench are 

described and prove the potential and versatility of the tool. The system opens a new broad of 

possibilities for maintenance engineers that are interested in obtaining a fast and reliable diagnosis of 

the condition of the bearings. 
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2. MCSA DIAGNOSIS METHOD 
 

The advanced current analysis consists of applying mathematical processing tools to the current 

signal consumed by the motor, in order to obtain its frequency spectrum. The presence of harmonic 

components in certain frequencies, named as failure frequencies, allows to make a diagnosis of the motor 

condition. Such diagnosis can be done since the mechanical failures lead to a distortion of the motor 

magnetic field and, hence, the motor current. Depending on the operational regime where the signal 

processing is performed, two techniques can be defined: 

• MCSA: the signal processing is applied during the steady state, when the power load and the 

motor speed are almost constant.  

• ATCSA: the signal processing is applied during the transient state, specifically in the start-

up, when the motor speed is variable. 

In the present work only the MCSA technique has been used. This technique is based on the 

application of the Fast Fourier Transform (FFT), which provides the harmonic components included in 

the analysed signal. Therefore, by applying the FFT, the signal is converted from the time domain to the 

frequency domain. The harmonic components are defined by their magnitude and frequency. 

Once the FFT is applied, the failure frequencies should be identified. In this case, the failures have 

been performed on the bearings, specifically on the external ring and the bearing balls. It can be 

demonstrated that this kind of mechanical failures cause the following failure frequencies in the 

vibrational spectrum [8], as shown in Table I. 
 

Table I. Failure frequencies in the vibrational spectrum [8] 

Failure Vibrational frequency (Hz) 

External ring 𝑓0 =
𝑁𝑏

2
· 𝑓𝑟 · (1 −

𝐷𝑏

𝐷𝑝

· cos 𝛽) 

Bearing balls 𝑓𝐵 =
𝐷𝑝

𝐷𝑏

· 𝑓𝑟 · (1 −
𝐷𝑏

2

𝐷𝑝
2 · cos 𝛽2) 

 

Where Nb is the number of balls, Db is the ball diameter, Dp is the pitch diameter, fr is the rotor 

mechanical frequency and β is the angle showed in Figure 1. 

Then, the failure frequencies in the vibrational spectrum can be converted into electrical current 

frequencies through the following expression: 

𝑓𝑐 = |𝑓𝑠 ± 𝑚 · 𝑓0,𝑏| 
 

Where fs is the system frequency (50 Hz/60 Hz) and m is a natural number (1, 2, 3, …) which indicates 

the harmonic family group. 

 
Figure 1 Bearing parameters 
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3. ALGORITHM FOR AUTOMATED FAULT DETECTION 

 
With the aim of automatize the failure diagnosis process, an algorithm which detects both types of 

failures has been developed. In such sense, the algorithm has been developed based on machine learning 

techniques. With the use of this kind of artificial intelligence techniques, it is transferred to a machine 

the technical know-how to evaluate if there exists any failure in the motor under evaluation. Due to the 

type of data the failure detection methods work with, the developed algorithm is based on supervised 

learning techniques. Considering the size of the available dataset to develop the algorithms, it has been 

chosen a classification technique based on Support Vector Machines (SVM). This technique is able to 

perform both regressions and classifications. In this case, it has been used to classify the data between 

failure and non-failure after applying the MCSA method, explained in the previous section. 

The SVM classification technique works classifying the input data into the available classes, 

specified by the labelled targets in the training dataset. To classify the data, it is divided into subsets 

which are placed in the broadest spaces as possible, based on its features. These spaces are determined 

by a separation hyperplane, defined as the support vector between the points of two contiguous classes. 

Based on the spaces, defined during the training process, when the algorithm works with new input data, 

this data is classified based on the spaces defined for each class.  

During the training process of the SVM technique, apart from adjusting the parameters according to 

the obtained accuracy in each iteration, it is necessary to define the hyperparameters to fit the algorithm 

with the training data. The hyperparameters are defined as γ and C, and the whole formulation for an 

SVM algorithm is determined by expression 1. For a sample of n records, in which features are assigned 

to vectors 𝑥𝑖𝜖ℝ, 𝑖 = 1, … , 𝑛 and labels are assigned to y, following the restrictions (expressions 2 and 3) 

it is calculated the values of b which maximizes it. 

𝑚𝑎𝑥 (∑ 𝑏𝑖

𝑛

𝑖=1

−
1

2
∑ ∑ 𝑦𝑖𝑏𝑖 (𝑒−𝛾‖𝑥𝑖 − 𝑥𝑗‖

2
) 𝑦𝑗𝑏𝑗

𝑛

𝑗=1

𝑛

𝑖=1

)     (1) 

Where: 

∑ 𝑏𝑖𝑦𝑖 = 0

𝑛

𝑖=1

     (2) 

0 ≤ 𝑏𝑖 ≤ 𝐶     (3) 

 

The usual hyperparameters set up process consists in determine a set of possible values for each 

hyperparameter and check the accuracy of every possible combination of their values. The developed 

algorithm, instead of implementing the usual procedure to set up the hyperparameters, makes use of 

metaheuristic algorithm to set up hyperparameters, concretely the Particles Swarm Optimization (PSO). 

This algorithm searches a set of values between given bounded values for each parameter to be set and 

defines a value for each searched parameter which provides a maximum, or minimum, value of the cost 

function. In this case, the cost function for the PSO is the training process error of the algorithm to be 

trained, setting the PSO to minimize it. The use of this technique has improved the performance of the 

SVM algorithm usage to detect motor failures. 

As the available datasets for each type of failure are narrow, two independent detection algorithms 

have been implemented for each type of failure, to ensure a better performance on the failure detection. 

Despite each algorithm is trained to detect different motor failures, their training process is the same, 

using the techniques previously defined. The implemented structure to train the algorithm is exposed in 

Figure 2. 
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Figure 2. Structure of the failure detection algorithms 
 

The developed algorithms have been implemented to take the current measurements as input data, 

obtained from the field tests. Once the input data is provided to the algorithms, the process follows the 

next steps: 

• The current with time data is transformed to current with frequency data, by means of applying 

Fast Fourier Transform (FFT). 

• Following the MCSA method, the characteristic frequencies of each failure are extracted. 

• Characteristic frequencies data is normalized to make all the extracted features have the same 

impact on the training process of each algorithm. 

 

Once the input data is obtained in normalized format, it is performed the algorithm training process, 

setting up the hyperparameters by means of the PSO technique, as it has been described previously. 

Finally, as result of the whole process, two different failure detection models are obtained, one for 

external ring failure detection, and another for bearing ball failure detection.  

 

4. APPLICATION PROGRAMMING INTERFACE (API) 
 

The interface of the web application is intended to remotely run the models explained in the previous 

section through an intuitive environment for the user. Web application interface communicates with the 

diagnosis system through API REST architecture within a .NET based application development. Figure 

3 shows the interaction between different developments. 

 
Figure 3. Block diagram interaction 

 

A description of the different application screens is provided in the following lines: 
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• Main screen: It shows to all useful information about how many tests on the motor bearing 

has passed without fail or with fail at the application tool. In addition, the user could check 

total number of trials since the start of registration. 

 
Figure 4. Main screen 

• New test screen: API contains a new test page to configure all parameters. First the kind of 

motor bearing and the sampling values should be configured. Then, user should introduce 

the file with the engine current values vector, sampled frequency, bearing type and pole pairs. 

 
Figure 5. New test screen 

• Diagnosis result screen: User obtains a Fail/NoFail response for external ring failure and 

bearing balls failures. Moreover, the FTT spectrum of the motor current is provided. 

 
Figure 6. Diagnosis result screen 

• Historical screen: For more user information, it could access to the historical diagnosis in 

order to review previous tests of the different engines. 
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5. EXPERIMENTAL TESTS 

 
The aim of the experimental tests is to obtain real registers of the current waveform when the motor 

is working at health and failure condition in the laboratory. These registers are used as raw data for the 

algorithm supervised training. In this section, the test bench, the failure scenarios, and the operating 

conditions for measuring are described. 

a) Test bench: The test object is a squirrel cage IM, whose rated features are showed in Table II: 

 

Table II. Rated features of tests induction motor  

Voltage (U) Frequency (f) Speed (V) Power (P) Current (C) Cos ɸ 

400∆ / 690¥ 50 Hz 1435 rpm 1.1 kW 2.4 A 0.78 

 
The test bench is formed by the following devices, which are connected as shown in the schema of 

Figure 7: 

• AC induction motor: it is the test object where the failure is induced. 

• DC motor: it acts as an adjustable load. 

• Three-phase autotransformer: it controls the voltage applied to the AC motor. 

• DC Source: it is formed by a single-phase autotransformer with a diode-based rectifier 

connected to the output. It controls the voltage applied to the DC motor. 

• Resistors: they are connected to the induced terminals of the DC motor, with an overall 

resistance of 14 Ω. 

• Switches: automatic breakers between the terminals of the AC autotransformer. 

• Measuring equipment: three clamps connected to an oscilloscope for the AC motor current 

measuring and a multimeter for the AC autotransformer voltage measuring. 

 

 
Figure 7. Schematic test bench 

 
b) Failure scenarios: To reproduce real failures in the bearings (model SKF 6204-2Z/C3), three 

scenarios have been defined in the laboratory, which are described in Table III. The selected 

scenarios are repeated in a sequential manner using a large number of bearings for testing. 
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Table III. Failure scenarios 

 

 

c) Operating conditions for measuring: The MCSA technique requires the measurement of the 

current signal consumed by the motor. The current measurement has been performed using three 

clamps (one per phase) connected to an oscilloscope, which has been configured at 5000 

samples/s of sample rate and 40 s of record length. 

The operating condition of the motor group depends on two controlled variables: 

• Voltage applied to the AC motor (UAC): it is controlled by the three-phase autotransformer 

and it determines the starting torque of the AC motor. 

• Voltage applied to the DC motor (UDC): it is controlled by the single-phase autotransformer 

and it determines the load level. 

 

By combining different values of the abovementioned variables, several operating conditions can be 

achieved. Specifically, four conditions have been defined, whose main features are showed in Table IV. 

The motor current is measured for each operating condition and failure scenario. 

Table IV. Operating conditions for current measuring   

Operating condition 𝑈𝐴𝐶  (V) 𝑈𝐷𝐶  (V) Description 

1 100 0 Not loaded AC Motor at minimum voltage 

2 200 0 Not loaded AC Motor at medium voltage 

3 200 70 Loaded AC Motor at medium voltage 

4 400 90 Loaded AC Motor at rated voltage 

 

 

6. RESULTS 
 

The models integrated in the API has been trained by using a large quantity of laboratory trials. As 

a result, the API can detect potential failures located in the bearings of IM. In order to assess the API 

performance, a new set of IM have been damaged. In this section, the API output screen is showed for 

each scenario defined in Table III. The obtained success percentage of the diagnostic tool is near 70.1% 

for the external ring failure and near 70.9% for the ball failure. Both percentages could be increased if 

more laboratory trials would be done.  

It should be noted that the user is not able to observe the fault patterns in the FFT image provided by 

the API, since there are no appreciable differences between healthy and faulty graphs at first sight. The 

diagnosis result is performed autonomously by processing the internal data. 

a) Healthy bearing: No damage is induced in the bearing, so the diagnosis result is negative for 

the external ring and the ball failure (see Figure 8). 
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Figure 8. Diagnosis result for a IM with healthy bearing 

 

b) Cut bearing: Damage is induced in the external ring, so the diagnosis result is positive for the 

external ring and negative for the ball failure (see Figure 9). 

 
Figure 9. Diagnosis result for a IM with cut bearing 

 

c) Dirty bearing: Damage is induced in the bearing balls, so the diagnosis result is negative for the 

external ring and positive for the ball failure (see Figure 10). 

 
Figure 10. Diagnosis result for a IM with dirty bearing 
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7. CONCLUSIONS 
 

In this paper, an intelligent detection system has been developed to diagnose failures in the external 

rings and the balls of IM bearings. This tool is based on the MCSA technique, which is an innovative 

method for the application of bearing failure detection. It also includes a machine learning algorithm 

based on support vector machine (SVM), which has been trained with real current registers from 

laboratory testing. Thanks to this algorithm, the detection system is capable to perform an automated 

diagnose of the motor bearing status, with an approximated overall accuracy of 70%; specifically, 70.9% 

for external ring failure and 70.1% for bearing balls failure. 

Moreover, the intelligent detection system has been integrated within an application programming 

interface (API), which can run the algorithm remotely through any authorized computer. This API 

provides a friendly environment to facilitate its use for any unexpert user. Therefore, if the users have 

the suitable equipment for the current measurement, they can easily obtain a rapid diagnose of their 

motors by using the API. In any case, the API developed in this paper can be used as a support tool in 

the diagnose decision-making process, improving the quality of the motor maintenance and, hence, 

extending the useful life of these machines. 

As future works, the obtained errors for bearing failure detection can be reduced by using more 

current registers in the algorithm training process. Besides, more detection models could be integrated 

in the diagnosis system in order to cover other common failures in IM, such as rotor misalignment, 

broken rotor bars, load coupling failures, and so on. As a result, an automated diagnosis system, which 

covers the most common mechanical failures detection in IM, would be obtained. 
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