
 

  1 

 

 White-box Models Development for Insulation Design and Providing 
Transformers Withstand to High-Frequency Resonant Overvoltages 

 

V.S. LARIN1*, D.A. MATVEEV2, M.V. FROLOV2 
1All-Russian Electrotechnical Institute (VEI – branch of RFNC-VNIITF), 

2Moscow Power Engineering Institute (NRU MPEI) 

Russian Federation 

vslarin@vei.ru 

SUMMARY 
Power transformers switching together with cable lines in renewable generation systems can be 

followed by high-frequency voltage oscillations  affecting the insulation of that transformers. Under 

unfavorable conditions, when oscillation frequency is close to one of transformer winding natural 

frequencies, resonant overvoltages inside the winding can develop which leads to overstressing of 

windings internal insulation and the risk of transformer damage. 

One of the possible measures to ensure the ability of transformer windings insulation to withstand 

operation high-frequency overvoltages is the application of high-frequency transformer models in 

order to determine dielectric stresses on windings internal insulation. At the stage of transformer 

insulation design and during design review within procurement process, it is extremely important to 

use high-frequency numerical models verified by comparison with experimental data. 

For the development and verification of high-frequency power transformer models, experimental data 

regarding natural frequencies and damping factors of free oscillations inside windings is needed first. 

This report describes an approach to the determination of natural frequencies and damping factors 

based on the registration of winding transient voltages and currents and fitting of free transient 

components with analytical equations. An approach to estimation of natural frequencies and damping 

factors using measured frequency responses of transformer winding is described too. 

A method of inclusion of experimentally obtained damping factors into high-frequency models is 

presented; the method implies correction of eigenvalues of system matrix of ordinary differential 

equations system describing transients inside windings. An approach to the development of wideband 

transformer models is also presented which is correct for simulation on both high-frequency and low-

frequency transients as well as steady states. 

 

KEYWORDS 

 

Power transformers, resonant overvoltages, windings, internal insulations stresses. 

 

 

             10356   2022 Session 

SC A2 - Power Transformers & Reactors 
PS 1 / Experience and new requirements for transformers 

for renewable generation 



 

  2 

 

1. INTRODUCTION 

In wind farms, the electric networks with connection of several wind generators into groups (clusters) 

by means of cable lines with the length from hundreds of meters to several kilometers are used. 

Power transformers switching together with cable lines can be followed by the appearance of high-

frequency oscillating voltages at transformer terminals; those voltages affect the internal insulation of 

that transformers’ windings. Under unfavorable conditions, when oscillation frequency is close to one 

of transformer winding natural frequencies, resonant overvoltages inside that winding can develop 

which leads to overstressing of windings internal insulation and the risk of its damage. 

Two main groups of possible measures to prevent winding insulation damage caused by resonant 

overvoltages can be highlighted: 

1) application of protection equipment (RC-circuits installation, application of pre-insertion resistors 

in circuit breakers, etc.) 

2) providing the ability of transformer windings insulation to withstand high-frequency overvoltages 

possible in operation. 

The second group of measures requires the application of methods of investigation and simulation of 

high-frequency transients inside transformer windings to determine dielectric stresses at different parts 

of longitudinal insulation. 

Recently, significant advances in high-frequency transformer modeling have been achieved. In the 

period from 2015 to 2021, CIGRE Working Group A2-C4.52 «High-Frequency Transformer and 

Reactor Models for Network Studies» carried out its activity. In 2019, the new Working Group 

«Transformer Impulse Testing» began its activity which includes simulation of high-frequency 

transients inside windings and estimation of transformers internal insulation stresses. 

Detailed high-frequency transformer models based on design data, so-called white-box models [1], 

experienced huge development. They make it possible to estimate transformer natural frequencies and 

calculate qualitative picture of voltage distribution inside windings during high-frequency transients. 

It is important to note that the reliability of high-frequency resonant transients simulation is 

determined by the accuracy of the representation of winding natural frequencies and damping factors 

in the model. In common, mathematical models used for simulation of impulse transients inside 

windings do not reproduce frequency dependency of the losses and damping at natural frequencies 

with enough accuracy as it is not crucial for impulse transients simulation. 

Simulation of resonant transients inside transformer windings imposes high requirements to the 

accuracy of damping factor values as they determine resonant voltage rise ratios. The use of inaccurate 

values of damping factors can cause underestimation of transformer internal insulation stresses; this 

can lead to low safety factors and insufficient insulation withstand to high-frequency overvoltages 

possible in operation. 

The authors of [2] suggest the approach to high-frequency transients simulation inside power 

transformer windings which is based on the use of the white-box model with lumped parameters 

determined from windings design data; this model should be supplemented by experimentally obtained 

values of damping factors. Such a hybrid model can be used for calculations both in the frequency 

domain, for example, for calculation of transfer functions of selected internal nodes, and in the time 

domain, for example, for calculation of induced voltages at transformer secondary windings [3]. 

In [4], an empirical expression is suggested for estimation of damping factors γ of natural oscillations 

at angular winding natural frequencies ω: 

γ / ω = 0,022 + 0,058·10–6, ω ≤ 0,5·106 rad/s;   (1) 

γ / ω = 0,05, ω > 0,5·106 rad/s. 

In [5], another expression can be found: γ = (0,022±0,01)ω; this demonstrates significant dispesion of 

damping factor values obtained for different types of transformer windings. 
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At the stage of transformer insulation design and during design review within procurement process it 

is important to use high-frequency numerical models verified by comparison with experimental data. 

In [6], problems regarding confirmation of transformer ability to withstand high-frequency stresses are 

considered, the difficulty of such confirmation by means of high-voltage testing is pointed out, and an 

alternative to direct testing is suggested; that alternative is hybrid numerical and experimental 

confirmation which can be conducted by means of combination of low-voltage measurements and 

simulation using verified high-frequency transformer models. 

For the development and verification of high-frequency power transformer models, experimental data 

regarding natural frequencies and damping factors of free oscillations inside windings is needed first. 

Such data can be obtained experimentally for transformers of identical or similar design. 

 

2. EXPERIMENTAL DETERMINATION OF FREQUENCIES AND DAMPING FACTORS 

OF NATURAL OSCILLATIONS INSIDE WINDINGS 

2.1. Determination of natural frequencies and damping factors from winding frequency 

responses 

Frequency responses and voltage transfer functions are integral characteristics of power transformer 

windings characterizing geometrical parameters and electrical connections between different parts of 

the windings. Although these responses implicitly contain the information about frequencies and 

damping factors of winding natural oscillations, the process of their extraction is not trivial. 

Approximate values of natural frequencies of transformer windings can be extracted from windings 

frequency responses using approaches [7, 8]. Main approaches are briefly described in table 1. 

Table 1 – Approaches to natural frequencies determination 

Approach Advantages Disadvantages 

Based on local maximums 

of measured voltage 

transfer functions of 

winding internal nodes 

Accuracy and simplicity. 

In case of deenergized tap changer 

(DETC) located in the middle 

height of the winding it is possible 

to obtain the values of 1st, 3rd and 

subsequent natural frequencies. 

Availability of winding internal nodes is 

needed. For better determination of even 

natural frequencies, nodes at 1/4 and 3/4 of 

winding length or the lead from the last disk 

should be available which is commonly not 

possible in practice. 

Based on local maximums 

of active component of 

winding input admittance 

Accuracy of determination. Utilization of vector network analyzers and 

high-frequency current transformers is 

needed which is not always available in 

practice. 

High-frequency current transformers usually 

have relatively narrow bandpass, which 

limits their application scope. 

Based on local maximum 

of active component of 

winding admittance G12 

determined from measured 

frequency response of the 

winding [7, 8] 

The possibility of utilization of 

widely used Frequency Response 

Analysis (FRA) measurement 

equipment. Natural frequencies can 

be obtained as a by-product of FRA 

diagnostics measurements [9] 

performed within condition 

assessment of power transformer 

windings. 

Not all natural frequencies are pronounced 

identically in frequency responses obtained 

from standard end-to-end measurements. 

It is necessary to use additional non-

standard measurement schemes for more 

accurate determination of natural 

frequencies [10]. 

 

It should be noted that the approach based on frequency responses is somewhat approximate. In case 

of close natural frequencies or implicit resonance maximums this approach does not always allow one 

to determine winding natural frequencies with sufficient accuracy. However, this approach assumes 
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utilization of widely used FRA measurement equipment [9] which makes this approach more 

convenient and preferable for use in practice. 

However, is it possible to determine damping factors of power transformer windings using frequency 

responses? 

It is known from basics of electric circuits [11] that it is convenient to characterize the sharpness of 

resonance curve of input admittance, voltage or current of resonant circuit by its width Δω at level of 

1/ 2  of maximum value (–3 dB). In the case of the resonance curve of the circuit input current or 

input admittance the width Δω is usually called the bandpass of the resonance circuit. For the common 

series RLC-circuit, the bandpass is inversely proportional to the quality factor: Δω ≈ ωres / Q = 2γ, 

where ωres stands for resonance angular frequency, and Q is the quality factor. In practice, this allows 

one to determine approximately the damping factor γ of a simple oscillating circuit using results of 

measurement of resonance circuit input admittance frequency response: γ ≈ Δω / 2. 

In [12], based on the consideration of simplified equivalent circuit of the transformer winding 

consisting of two pi-sections, analytical expressions were obtained for frequency dependency of 

voltage at the middle point, for active components of input admittance and for neutral current as well 

as for the relationship between widths of resonance peaks Δω and damping factor γ, namely: 

- for absolute values of voltage at internal nodes of the winding: γ ≈ Δω / 2; 

- for active component of input admittance and neutral current and reactive component of voltage at 

internal nodes of the winding: γ ω/ 2 2 1 ω/1,3     . 

Results presented in [12, 13] lead to a practically important conclusion about the possibility of 

damping factor estimation using expression γ ≈ Δω/1,3 via determination of resonance peaks width Δω 

of winding frequency response active component obtained from standard end-to-end measurements in 

accordance with IEC 60076-18 [9] and representing the ratio between neutral current and winding 

input voltage. 

In [12, 13], it is shown that correct estimation of damping factor γ using resonance peaks width Δω is 

possible, but far from always. The practical possibility of Δω determination and the validity of γ 

estimation depend on how pronounced resonance peaks of frequency responses are and on how far 

adjacent winding natural frequencies are spaced. In the case of close natural frequencies, superposition 

of adjacent resonance peaks is possible which leads to incorrect estimation of Δω and γ. 

In general, frequency responses curves of neutral current active component have complicated traces. 

Resonance peaks may have both positive and negative polarity. For the calculation of the width of 

individual resonance peaks it is convenient to ignore information regarding their polarity and analyze 

absolute values. Calculation of the width of the individual resonance curve can be performed as 

follows [13]. 

1. Determination of natural frequencies fi  (i = 1 … n) based on local maximums of resonance curve. 

2. Determination of frequencies fmin.i (i = 1 … n + 1) corresponding to local minimums of the curve in 

frequency ranges (0; f1), (f1; f2), …, (fn-1; fn). 

3. Determination of local maximums of resonance curve Amax.i in frequency ranges (fmin.i; fmin.(i+1)). 

4. Determination of frequencies fleft.i и fright.i, within which resonance curve excceds 
max. / 2iA . 

5. Calculation of resonance curve width:  

. . 1ω 2π( )left i left if f   ; 
. .ω 2π( )right i right i if f   ; 

. .ω ω ωi right i left i    . 

The  described approach is illustrated below on the example of 1600 kVA power transformer with HV 

winding having cast insulation. Figure 1 shows frequency responses of phase A of the HV winding 

obtained from standard end-to-end measurements and corresponding frequency responses of 

conductance G12. Figure 1, b illustrates that a good agreement of G12 curves in cases of open and 

closed LV winding starts from about 200 kHz which points out to the fact that the first HV winding 

natural frequencies are located in that region. 
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а) 

 
b) 

Figure 1 – Frequency response (а) and conductance (b) of HV winding of 1600 kVA dry-type 

transformer in case of open (1) and closed (2) LV winding 

 

Figure 2 shows the absolute value and active component of HV winding neutral current IN for phases 

A, B and C obtained from measured frequency responses divided by Z = 50 Ohm. 

 
a) 

 
b) 

Figure 2 – Absolute value (a) and active component (b) of HV winding neutral current IN in case of 

open LV winding: 1, 2 and 3 – pahse А, В and С correspondingly 

 

Figure 2 illustrates that resonance peaks in the active component of IN are more pronounced than in 

absolute value of IN. As seen from resonance peaks of the active component of IN, the first natural 

frequency of HV winding is about 186 kHz, the second is about 200 kHz and the third is about 214 

kHz. It should be noted that in active component of IN of phase B the first natural frequency happens 

to be most pronounced while the second does not appear at all. For phases A and C, due to proximity 

of the first and the second natural frequencies, resonance peaks at the first natural frequency happens 

to be pronounced weakly in active component of IN. These differences can be associated with design 

features of windings of the transformer under consideration, namely with the influence of adjacent 

windings due to low HV winding capacitance to earth, close location of adjacent HV windings and 

star connection of HV and LV windings (measurements of HV winding frequency responses shown 

above were performed using standard scheme with floated open-circuited LV winding, for details 

see [10]). These examples show that it is not always possible to determine damping factors for all 

natural frequencies of interest using standard-scheme frequency responses. In this case, in order to 

obtain missing results, one can use frequency responses measured via non-standard schemes with 

earthed adjacent windings [10], as well as voltage transfer functions of windings internal nodes 

available for measurements (for example, DETC or OLTC taps). 

In practice, instead of using the damping factor γ, it is convenient to use the ratio of time constant of 

damping τ = 1/γ to a period of resonance frequency T = 1/fres; this ratio represents the rate of free 

oscillation damping at windings natural frequencies. Using obtained above relationships between Δω 

and γ, it is possible to write an approximate expression for τ / T based on measured frequency 

responses: 
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γ

τ

γ ω

рез резf f
K

T
 


,   (2) 

where Kγ = 2 in case of calculation based on frequency responses of input admittance module and 

internal nodes voltage module; 
γ 2 2 1K    in case of calculation based on frequency responses of 

input admittance active component, internal nodes voltage reactive component or neutral current 

active component. 

Table 2 summarizes the results of estimation of τ / T ratio for the first three HV winding natural 

frequencies of the transformer under consideration. 

Table 2 – Results of estimation of τ / T ratio for 1600 kVA transformer 

Approach 
Phase of HV 

winding 

τ / T ratio for natural frequency with number 

1 2 3 

Transient voltage fitting [14] 

(with two dominant frequencies) 

А 8,46 9,28 –– 

В 8,65 –– 9,29 

С 8,45 9,37 –– 

Estmation using (2) for Re(IN) curve А 2,07 7,66 10,3 

В 8,37 –– 9,59 

С 2,28 8,25 10,1 

Estmation using (2) for voltage 

transfer function in middle point of 

the winding 

А 6,72 8,07 10,7 

В 8,04 –– 10,4 

С 6,58 8,66 10,1 

 

Thus, in the case of pronounced resonance peaks in the neutral current active component curve, 

damping factor estimation using the ratio γ ≈ Δω/1,3 gives a good agreement with the results of more 

accurate approach [14]. 

To summarize, it should be noted that for verification of obtained values of γ it is reasonable to 

compare results for different phases of power transformer winding as well as the results from different 

resonance curves, for example, winding neutral current and voltage transfer functions of available 

winding internal nodes (OLTC or DETC taps).  

 

2.2. Determination of natural frequencies and damping factors via curve fitting of transient 

voltages and currents waveforms 

More accurate determination of natural frequencies and damping factors can be achieved with the use 

of the approach based on registration and subsequent curve fitting of waveforms of transient voltages 

inside power transformer windings and neutral current [14]. 

To explain that approach the transient voltages and currents in simplified equivalent circuit of the 

winding consisting of four pi-sections with lumped parameters (figure 3) are considered below. 

 

Figure 3 – Simplified equivalent circuit 4xRLC 
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In case of connection of the circuit from figure 3 to the source of unity sinusoidal voltage, expressions 

for voltage U4 and neutral current IN in operator form can be formulated as follows: 

3

4 2 2

3

ω ( ( ) 1)
( )

ω ( )

pK R pL
U p

p F p

 
 


   (3) 

4

2 2

3

ω ( ( ) 1)
( )

ω ( ) ( )
N

pK R pL
I p

p F p R pL

 
 

  
   (4) 

where 

     
2 2

3( ) ( )( ) 1 (4 )( ) 4 ( ) ( ) 1F p p K C R pL p K C R pL pC R pL pK R pL              (5) 

Expressions for voltages at nodes 2 and 3 can be obtained in similar way. 

It is important to note that the denominator of neutral current expression (4) of the 4xRLC equivalent 

circuit has common roots with denominators of expressions for internal nodes voltages. It can be 

shown that this is true for any degree of discretization of the considered equivalent circuit. In general, 

in the case of NxRLC equivalent circuit with N  , expressions for voltage at last winding element 

and neutral current can be formulated in general terms: 

1

2

( )
( )

( )
N

F p
U p

F p
   1

2

( ) ( ) (1 ( ))
( )

( ) ( ) ( )

N
N

U p F p pK R pL
I p

Z p F p R pL

  
 

 
  

Roots of 6th degree polynomial F3(p) are three complex conjugate pairs. Roots of denominator in (3) 

can be represented as the set of values: 

1,2 ωp j  ; 
(2 1),(2 2) ωi i i ip j     . 

In time domain, expressions for voltage u4(t) and neutral current iN(t) can be expressed as follows: 

 
3

4 1 2 2 1 2 2

1

( ) sin ω cosω sinω cosω jt

j i j i

j

u t B t B t B t B t e


 



        (6) 

   0

3
γ 2γ

1 2 2 1 2 2 0

1

( ) sin ω cosω sinω cosω jt t

N j i j i

j

i t D t D t D t D t e D e
 

 



       (7) 

where B1, B2, D1 и D2 are the amplitudes of voltage and neutral current forced components; B2j+1, B2j+2, 

D2j+1 и D2j+2 are the amplitudes of voltage and neutral current free components with the frequency 

equal to j-th natural frequency of the circuit fj; ωj = 2π fj; D0 is the initial value of an aperiodic 

component of neutral current. 

From (6) and (7), practically important conclusion about the possibility of natural frequencies fj and 

damping factors γj determination from free components of winding internal voltages and neutral 

current follows. 

It should be noted that the considered 4xRLC network has three independent nodes which determines 

the presence of three natural frequencies. Real power transformers windings possess a higher number 

of natural frequencies, however, even in that case transient voltages and neutral current of the winding 

can be expressed by equations (6) and (7) with separation of oscillations into free and forced 

components. 

The theoretical background presented above can be used in practical cases as follows. If internal nodes 

of power transformer winding, for example, taps of DETC or OLTC, are available, registration of 

transient voltages inside winding after connection of undamped sinusoidal voltage source with 

frequency of interest can be performed. Based on the representation of transient voltage inside 

windings as a superposition of free and forced components, the transient voltage can be approximated 

using expression of type (6). 

In general, depending on source frequency, free oscillation can contain several natural frequencies. In 

common, first several natural frequencies are of greatest interest in the analysis of impulse and 

resonant transients inside transformer windings as they have the most substantial contribution in 
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transient voltages and are characterized by the highest voltage rise inside windings. Due to that, in 

practical cases, it is convenient to limit the number of considered natural frequencies to two or three 

featuring the highest amplitudes as they make a decisive contribution to transient voltage. 

Fitting of transient voltage u(t) inside winding can be done in the manner described below. 

1. Determination of forced oscillations frequency f0 and corresponding amplitudes B1 and B2 using 

steady-state part of the waveform. This can be done by determination of source frequency, the steady-

state amplitude of voltage inside winding and phase shift between voltage inside winding and source 

voltage. Alternatively, one can do it using a least-squares method with f0, B1 and B2 as independent 

variables. The second approach appears to be preferable due to less sensitivity to high-frequency noise 

superimposed on the signal. 

2. Calculation of steady-state voltage approximation using determined values of f0, B1 and B2 for the 

whole registered waveform of transient voltage: 
1 0 2 0( ) sin(2π ) cos(2π )ssu t B f t B f t  . 

3. Determination of free voltage component: ( ) ( ) ( )free ssu t u t u t  . 

4. Spectral decomposition of free voltage component ufree(t) using Fast Fourier Transform and 

determination of dominating natural frequencies as points of local maximums of the spectrum. 

5. Determination of fj, B2j+1 and γj values providing the best fitting of free component using least-

squares method (j = 1÷n, where n being a number of used frequencies). For example, in case of fitting 

with two frequencies, free component can be fitted with expression: 

   1 2γ γ

3 1 4 1 5 2 6 2( ) sin ω cosω sinω cosω
t t

freeu t B t B t e B t B t e
 

      , где 
1 1ω 2πf  и 

2 2ω 2πf . As initial 

estimation of f1 и f2, natural frequencies with highest amplitudes in a spectrum of free component can 

be used. 

6. Estimation of absolute fitting error δ ( ) ( ) ( ) ( )ss freeU t u t u t u t    and assessment of sufficiency 

of fitted frequencies number n. 

Thus, the most pronounced natural frequencies can be obtained from spectral analysis of free 

component of transient voltage; these natural frequencies can be verified by means of free component 

fitting in the time domain.  

Amplitudes of the free component spectrum at individual natural frequencies are more or less 

pronounced depending on how source frequency is close to considered natural frequency. Due to that, 

it is reasonable to select for transient voltage registration a number of source frequencies 

approximately equal to assumed natural frequencies and its intermediate values. 

As an example, figures 4, a and 4, b show measured waveforms of HV winding middle point voltage 

(at DETC tap) of phase B of 1600 kVA dry-type transformer in case of source frequencies of 186 and 

214 kHz (blue curves) and their approximation done in accordance with the algorithm described above 

(red curves). Figures 4, a, and 4, b illustrate the spectrum of voltage free component (blue curve) and 

the spectrum of source voltage (red curve). Frequencies of 186 and 214 kHz are approximately equal 

to the first and the third natural frequencies of HV winding. Transient voltages are given in relation to 

source voltage amplitude (5 V). 

In this example, fitting of free component of transient voltage is done with two frequencies (f1 and f2). 

It is evident from figure 4 that in considered cases, when free voltage component contains one or two 

most pronounces natural frequencies, fitting error does not exceed 5%. In case of the presence of more 

natural frequencies with comparable amplitudes in free component spectrum it is can be reasonable to 

do free component fitting with more than two frequencies. 

The principle of the algorithm described above is based on the extraction of forced voltage component. 

For that purpose, registration length should be sufficient to reach a steady state. Required transient 

registration time can be estimated using typical values of the time constant of damping inside 

windings. For power transformer windings, the ratio of damping factor γ to natural angular frequency 

ω is commonly γi / ωi = 0,012÷0,032 [3–5] which corresponds to the ratio τi / Ti ≈ 5÷14. Considering 
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that, registration time can be conservatively selected equal to 50÷100 periods of the first natural 

frequency (or its supposed value). 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Figure 4 – Transient voltage (a, b), approximation (c, d), frequency spectrum (e, f) and absolute fitting 

error (g, h) of free voltage component at source frequency of 186 (a, c, e, g) and 214 kHz (b, d, f, h) 

It should be noted that, in practice, winding internal nodes are not always available for measurements. 

This availability is possible when performing repetitive surge oscillography (RSO) in factory 

conditions which is usually done for new power transformers design with high rated power. Also, 

measurements at terminals of windings connected to DETC and OLTC are possible in practice, 

especially in case of dry-type transformers. 

We now consider determination of natural frequencies and damping factors using neutral current 

registration. 

For neutral current registration, current shunt of 50 Ohm matching impedance can be used. During 

measurement process, it must be kept in mind that neutral current at high frequencies and source 



 

  10 

 

voltage of 5-10 V is of several of mA, so results of neutral current registration are more polluted with 

high-frequency noise than results of winding transient voltages registration. 

Figures 5, a and 5, b show measured waveforms of HV winding neutral current of the transformer 

considered above at source frequencies at 186 and 214 kHz (blue curves) and the results of waveforms 

processing (red curves). Figures 5, e and 5, f show the spectrum of free current component (in blue) 

and resulting neutral current (in red). Transient currents are given in relation to 5 mA referred to 5 V 

source voltage. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Figure 5 – Neutral transient current (a, b), approximation (c, d), frequency spectrum (e, f) and absolute 

fitting error (g, h) of free current component at frequencies of 186  (a, c, e, g) and 214 kHz (b, d, f, h) 

It is evident from figure 5 that the neutral current contains component with a frequency of about 

45 kHz which correspond to oscillations between HV and LV windings. It is important to note that 

oscillations at that frequency are not pronounced in the free voltage component spectrum of the HV 

winding middle point. Neglect of this oscillating component in the current led to an approximation 

error of about 10–15%. However, for estimation of frequencies and damping factors of self-
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oscillations of the winding under consideration to take into account the inter-winding oscillation 

component is not of significant importance. 

It is also evident from figures 5, g and 5, h that high-frequency noise is present in the neutral current 

signal which is due to small values of measured current – no more than 0,6·5 = 3 mA. 

Obtained values of natural frequencies and damping factors are summarized in table 3 which also 

contains values of natural frequencies obtained from HV winding frequency responses in accordance 

with [7, 8]. 

Table 3 – Results of natural frequencies and damping factors determination 

Parameters 
Values for natural frequency with number 

1 3 

Natural frequency, kHz 

- from transient voltage approximation 

- from neutral current approximation 

- from active admittance in accordance with [7, 8] 

 

185,8 

186,1 

186,7 

 

214,4 

214,9 

214,3 

Damping factors γ, 1/ms 

- from transient voltage approximation 

- from neutral current approximation 

 

21,9 

21,1 

 

23,1 

23,9 

τ / T ratio 

- from transient voltage approximation 

- from neutral current approximation 

 

8,65 

8,80 

 

9,29 

8,97 

 

Based on the results demonstrated above, it can be stated that approaches based on fitting of winding 

transient voltages and transient neutral current provide an acceptable degree of accuracy of natural 

frequencies and damping factors estimation for power transformers. An approach based on transient 

voltage fitting is more accurate due to higher signal-to-noise ratio, but it has certain limitations related 

to the availability of internal nodes in the measured winding which is not always possible in practice. 

An approach based on neutral transient current has lower signal-to-noise ratio and components related 

to inter-winding oscillations, however, it does not require the access to winding internal nodes which 

is an unquestionable advantage of this approach. 

 

3. VERIFICATION AND IMPROVEMENT OF ACCURACY OF THE MODELS 

In order to provide transformer windings ability to withstand resonant and high frequency 

overvoltages possible in operation, sufficiently accurate determination of internal insulation stresses 

under such conditions is needed at the design stage. This task can be solved in two steps: 

1) calculation of voltage waveforms at transformer terminals during transients initiated by typical 

switching processes in renewable generation electrical network; 

2) calculation of transformer windings internal insulation stresses caused by calculated voltage 

waveforms at transformer terminals. 

Accurate calculation of resonant overvoltages is not possible without taking into account the 

frequency dependency of damping of oscillations inside transformer windings. Due to that, the 

inclusion of experimental values of damping factors obtained in accordance with recommendations of 

section 2 into transformer model used for simulation of transients both in external network and inside 

windings is needed. The method of such inclusion is described in this section. 

 

3.1 Calculation of voltages at transformer terminals 

Undamped transients inside transformer windings can be described using the following system of 

ordinary differential equations [5]: 
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,  (8) 

where U(t) is the vector of voltages at transformer equivalent circuit nodes; I(t) is the vector of 

currents in transformer equivalent circuit branches; L is inductance matrix; С is capacitance matrix; T 

is incidence; С0 – matrix of capacitances between circuit internal nodes and external terminals; T0 – 

matrix representing connections between equivalent circuit branches and external terminals. 

Natural frequencies of windings internal voltage oscillations can be obtained as the eigenvalues of 

system matrix of the ordinary differential equations system in relation to winding internal voltages. 

We now formulate such equations system by differentiating the first equation of (8) and considering 

the second equation of (8): 

 
   

 2 2

01 1 1 1 1

0 02 2

T T
d U t d U t

U t T U t
dt dt

        0C T L T C T L C C .   (9) 

System matrix eigenvalues  

   1 1λ eig eig T   M C T L T    (10) 

represent the squares of transformer windings natural frequencies. We now take account of the 

frequency dependency of natural oscillations damping by correction of M eigenvalues: 

    
2

λ γ / ω 1 λ 2 γ / ω λj    ,   (11) 

the ratio γ / ω  being set in accordance with experimental data obtained using section 2 

recommendations. 

System matrix restoration using corrected eigenvalues is done as follows: 

1 M VΛV ,   (12) 

where Λ is the diagonal matrix of corrected eigenvalues λ' of matrix M; V is the matrix consisting of 

eigenvectors of M. Corrected system matrix M' allows one to simulate transients both in external 

network and inside transformer windings with taking account of the frequency dependency of natural 

oscillations damping. 

Calculation of voltage waveforms at transformer terminals requires the use of the model representing 

transformer behavior as seen from the external network. Such models are called black-box models [1]; 

in the case of transformers these models are formulated using frequency response of terminal 

admittance matrix [15]. At the design stage, such models can be built via the calculation of the 

terminal admittance matrix using transformer design data. This approach allows one to take frequency 

dependency of damping into account by correction of system matrix of equations system (9) in 

accordance with (11). Calculation of frequency response of terminal admittance matrix is performed 

by means of solving the equations system (8) in the frequency domain: 

         

     

1 1

0

1 1

0

ω ω ω ω

ω ω ω ω

Tj U I t j U

j I U U

 

 

    


 

0

0

C T C C

L T L T
,  (13) 

where C' is corrected capacitance matrix calculated via corrected system matrix M': 

 
1 1T   C M T L T .    (14) 

Using (13), the frequency response of terminal admittance matrix Y(ω) is calculated column-by-

column: for calculation of j-th column, j-th element of the vector of terminal voltages U0(ω) should be 



 

  13 

 

equal to unity, the other elements being equal to zero. After solving (13) the frequency response of j-th 

column of Y(ω) is calculated as follows: 

     ω ω ω ωT T

jY j U I 
0 0

C T .  (15) 

The frequency response of the terminal admittance matrix of 630 kVA dry-type transformer is shown 

in figure 6; the frequency dependency of the damping is taken into account in accordance with (10–

12). The values of damping factors are calculated in accordance with section 2 recommendations. 

 

Figure 6 – Damped and undamped frequency responses of terminal admittance matrix of 630 kVA 

dry-type transformer 

 

Black-box model is formed by means of the approximation of calculated frequency responses. 

Inclusion of obtained transformer model into renewable generation network model is implemented 

using obtained approximation coefficients [16]. 

 

3.2 Calculation of internal insulation stresses inside windings 

Voltage waveforms at transformer terminals calculated using the black-box model described in sub-

section 3.1 are the input data for calculation of internal insulation stresses inside transformer windings. 

Calculation of voltage transfer from transformer terminals to selected internal nodes is performed 

using corresponding transfer functions. 

Calculation of transfer function can be performed via solving of equation (9) in the frequency domain: 

       
1

2 2 1 1 1

0ω ω ω ωTU U


    
0 0

M I C C C T L T ,   (16) 

where I – is the identity matrix. Figure 7, а shows the comparison of transfer functions of the middle 

point of HV winding calculated using (16) and obtained experimentally. 

With known voltage waveforms at transformer terminals, selected internal nodes voltages can be 

calculated using coefficient of corresponding transfer functions approximation: 

 
   

     

0

int 0

dX t
X t U t

dt

U t X t U t


 


  

A B

C D

,   (17) 

where Uint(t) is the vector of voltages at selected internal nodes; A, B, C, D – matrices containing 

coefficients of transfer functions approximation. Figure 7, b shows the comparison of simulated and 

registered voltage waveforms of the middle point of 630 kVA dry-type transformer HV winding under 

the impact of sinusoidal voltage with frequency equal to the first natural frequency of HV winding. 
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a)                                                                   b) 

Figure 7 – Transfer function of voltage (a) and voltage waveform (b) at HV winding middle point of 

630 kVA dry-type transformer with sinusoidal voltage with frequency equal to the first natural 

frequency of HV winding applied to HV winding line terminal 

 

Comparison of the first natural frequency of HV winding and resonant voltage rise in winding middle 

point obtained by the model with experimental values is presented in table 4.  

Table 4 – Comparison of model and experimental data regarding the first natural frequency of 

630 kVA dry-type transformer HV winding 

Parameter Calculated Measured Difference, % 

First natural frequency of HV winding, kHz 92,7 91,7 1,1 

Resonant voltage rise at the first natural 

frequency of HV winding, p.u. 
2,73 2,62 4,2 

 

 

4. WIDEBAND TRANSFORMER MODEL 

Renewable generation systems commonly comprise power electronics converters that connect DC 

networks of wind generators and photovoltaic cells with AC power utility system. In recent years, 

solid-state transformer technology got significant development; this technology finds application in 

the renewable generation systems. Transformers in such converter units operate in non-standard 

conditions: voltage waveforms are often non-sinusoidal, and operational mode represent the periodical 

sequence of transients initiated by power converters switching. Numerical modeling of such units 

requires the application of wideband transformer model which would be correct for the simulation of 

both low-frequency and high-frequency transients as well as steady states. 

To be correct at high frequencies, the model should have detailed representation of windings. The 

main disadvantage of classical detailed transformer models (white-box models) is an inability to 

represent low-frequency phenomena correctly. Historically, such models were used for impulse 

transients simulation inside transformer windings. For that application, it is acceptable to neglect 

magnetization phenomena; in the meantime, magnetization should be taken into account during the 

simulation of quasi-steady-state modes of converter units. 

The suggested wideband model is based on a detailed equivalent network of the transformer [17]. For 

the sake of simplicity, the model shown in figure 8 represents a two-winding transformer, each of the 

windings being split into four elements. For each of the elements the set of parameters is calculated: 

self and mutual inductances, series capacitance, capacitance to the ground and nearby winding, the 
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resistance of the part of winding represented by the given element. Self and mutual inductances of 

winding parts are taken into account in transformer equivalent network by means of series and shunt 

inductances which are calculated using inductive decoupling. For the sake of simplicity, in figure 8 

notations are given only for those parameters of an equivalent network which are related to element 

with the number 1. 

The whole set of series and shunt inductances is the electric equivalent network of the magnetic circuit 

of the transformer which is separated from the rest of the equivalent circuit by ideal transformers. For 

convenience, inductances are referred to unity number of turns; this allows to use the number of turns 

of the element as the corresponding ideal transformer ratio. 

The equivalent circuit may be supplemented by resistances representing core losses; for the sake of 

simplicity that resistances are not shown in the figure. 

 
Lii – shunt inductance of electric euivalent network of transformer magnetic circuit; Lij – series inductance; Ki – series 

capacitance of winding element; Сii – capacitance of winding element to ground; Cij – capacitance bwtween elements of 

transformer winding; Ri – resistance of winding element; wi:1 – ideal transformer; a, x – linear and neutral terminals of LV 

winding; A, X – linear and neutral terminals of HV winding 

Figure 8 – Wideband equivalent circuit of the transformer  

 

The distinctive feature of the suggested model is the fact that series and shunt inductances of 

equivalent circuit are considered with taking account of transformer core magnetization. As a results, 

the model turns out to be correct for the calculation of linear low-frequency and steady-state 

phenomena which require the modeling of magnetization. In the meantime, this model is capable of 

correct representation of transformer natural frequencies; the more detailed the windings 

representation is, the higher are the natural frequencies that can be represented by the model. Another 

advantage of the model is the fact that winding splitting into parts allows one to calculate dielectric 

stresses on different parts of internal insulation; this is especially crucial for transformers in converter 

units, internal insulation of which is commonly affected by voltage with non-standard waveforms 

often containing DC components. 
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Verification of suggested wideband transformer model can be implemented both in frequency and in 

the time domain: for example, by means of comparison of frequency responses of input admittance or 

transfer functions in typical operational arrangements as well as by means of comparison of simulated 

and registered waveforms of currents and voltages in operation mode. The example of the 

development and verification of such a model is presented in [17]. 

 

 

CONCLUSIONS 

Development of methods for experimental determination of power transformers windings natural 

frequencies and damping factors plays an important part in improvement and verification of high-

frequency transformer windings mathematical models applicable for resonant overvoltages simulation. 

Verified high-frequency models can be obtained with the use of experimental data on natural 

frequencies and damping factors. 

Natural frequencies and damping factors of power transformer windings can be determined 

approximately using voltage transfer functions of windings internal nodes available for measurements 

as well as analyzing resonance peaks width of winding frequency responses. 

Natural frequencies and damping factors also can be obtained using an approach implying registration 

of winding transient voltages and currents, extraction of free components of oscillations and 

subsequent spectral analysis and time-domain approximation using analytical equations describing 

free oscillations in windings. 

Damping factors obtained experimentally can be included in numerical models of transformers via 

eigenvalues correction of matrix of equations system describing transients inside windings. 

The corrected matrix can be used for calculation of terminal admittance matrix frequency response as 

well as for calculation of voltage transfer functions between transformer terminals and selected 

internal nodes of the winding. Model is formulated based on calculated frequency responses fitting; 

this model takes experimentally obtained damping factors into account in case of simulation both 

external network transients and transients inside transformer windings. 

An approach to the development of a wideband transformer model correct for both high-frequency and 

low-frequency transients as well as for steady-state modes is presented. The distinctive feature of the 

suggested model is the possibility of taking core magnetization into account while preserving detailed 

representation of windings. Such models may be especially useful in the design process of 

transformers for operation in non-standard conditions, for example, in the case of transformers for 

renewable generation. 
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