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SUMMARY 

 
The decision to push ahead with the energy transition in Germany and the associated shutdown of 

nuclear and fossil fuel power plants poses major challenges, especially for the transmission grid. This 

must be expanded for the future transport of energy. This involves, on the one hand, the construction of 

DC links to connect offshore wind farms and, on the other hand, the expansion and refurbishment of the 

existing AC grid.  In the context of the rehabilitation of the existing network, the application of a 

probabilistic safety concept offers an interesting technical approach to the implementation of these 

challenges. Both the current [1] and predecessor VDE 0210 (regulations for the construction of overhead 

power lines in Germany) do not take into account the level of possible damage consequences for high-

voltage steel lattice pylons in Germany since 1903. Thus, the same probability of failure is specified for 

all pylon locations, both in densely populated and undeveloped areas.  

This paper describes the main features of the probabilistic calculation method for existing high-voltage 

steel lattice pylons based on DIN EN 1990 [2], as it is principally regulated for overhead lines in VDE-

AR-N 4210-4 [3]. By evaluating the possible consequences of damage, all pylon locations can be 

assigned to 5 different reliability levels. With the help of stochastic models, impacts and resistances can 

be described very accurately. In this way, a site-specific proof of stability can be provided for existing 

steel lattice pylons. This enables a risk-considered refurbishment of the energy transmission grid.  As a 

starting point in this context, reliability level 5 represents all series of standards. Based on this, the 

probabilistic model significantly increases the safety level of existing pylons. 

Within the framework of a case study, it was possible to demonstrate for the load case of pressure failure 

that the reliability index of 3.6 almost reaches reliability level 2. If, in the context of this example, the 

pylon was located near a railway line, it would have been assigned reliability level 3. With 3.6, this 

pylon would be clearly above the requirements and the proof would thus be provided.  

The probabilistic safety concept offers great technical potential, as there are further optimisation 

possibilities through more precise considerations on the side of the impacts (e.g. the weather 

parameters). The development of the probabilistic safety concept for lattice pylons can be applied to 

other areas of the energy grid. 
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1. Introduction 

The energy transition in Europe with the goal of climate neutrality is in full swing. The provision of a 

sustainable and efficient energy transmission network plays a major role in this. In this context, effort 

and material should be used as efficiently as possible with the aim of technical system safety. 

For high-voltage lattice pylons, since 1903, various editions of VDE 0210 (regulations for the 

construction of overhead power lines in Germany) have considered the level of possible damage 

consequences to be identical for all locations, thus aiming for the same probability of failure.  

Since 2010, the probabilistic calculation method and normative basis from DIN EN 1990 [2] have made 

it possible to assign all pylon locations to different reliability levels by evaluating possible damage 

consequences. By adhering to the individually determined reliability indices according to VDE-AR-N 

4210-4 [3], a low-risk repair of the steel lattice pylons is guaranteed. 

 

2. Probabilistic safety concept 

2.1.   Classification of the safety concepts 

The various safety concepts are shown in Table I [4]. 

 
Table I: Classification of the safety concepts 

Safety concept Level Value for the reliability Design requirement 

Deterministic (empiric) 0 Global safety factor  existing ≤ allowable  = critical  /  

Semi-probabilistic I Partial safety factors R, S existing  (S S) ≤ critical  / R 

Probabilistic 

(approximation) 
II Reliability index  existing  ≥ required  

Probabilistic (exact) III Probability of failure Pf existing Pf ≤ allowable Pf 

 

The first safety concept (Level 0) was based on gathering experience. For the design of structures, 

stresses from frequently undershot actions were assumed in 1-fold height. On the resistance side, rarely 

undershot stresses were assumed, which were divided by a global safety factor . This had to include all 

uncertainties on the action and resistance side. In this way, it was not possible to do justice to the 

different scattering effects. In OHL construction, the wind load scatters more strongly than compared to 

the conductor tension force. The level of the safety factor was initially determined intuitively. The level 

was influenced by the material used, to which it referred, or the circumstance of whether damage had 

been announced or was to be expected suddenly. If no damage occurred over a long period of time in 

structures designed with this safety factor, there was a suspicion of safety reserves and the safety factor 

could be gradually lowered to avoid wasting resources. If, on the other hand, damage occurred 

frequently, the factor had to be increased because the risks were too high. Nowadays, the second, 

common safety concept (Level 1) uses partial safety factors. These refer to quantile values of certain 

random realisations of the action and resistance side. High realisations of the actions, e.g. the 0.98 

quantile, which is fallen short of or at most reached with a probability of 0.98, are increased by S.  

Low realisations of the material strength, e.g. the 0.05 quantile, are decreased with R. With this 

approach, it is theoretically possible to take into account the different degrees of dispersion of the various 

variables on the action and resistance side and to control the probability of failure by specifying a certain 

distance between stress due to 0.98 quantile of action and 0.05 quantile of strength. For reasons of 

simplification, the number of partial safety factors is kept low. Their amount must therefore be oriented 

towards the most scattering variables. On the other hand, it is difficult for a society to quantify the 

accepted probability of failure, i.e. the probability with which the stress due to the randomly realised 
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actions exceeds the randomly realised strength in the cross-section. Finally, the previous design practice 

should not be suddenly discontinued. Structures designed with global safety are still in operation today 

and it would be incomprehensible if half or twice as large cross-sections were designed due to a change 

in the safety concept.  

Despite its weaknesses, this safety concept will be used for the foreseeable future in the construction of 

new structures. For the recalculation of existing structures, on the other hand, the application of 

probabilistic safety concepts Level II or III is worthwhile. With the Level II concept, a minimum value 

of the reliability index must be maintained; with the Level III concept, the calculated probability of 

failure Pf must not exceed a limit value. The Level II concept is an approximation method, which is 

presented in more detail below. An exact calculation of the failure probability Pf according to Level III 

is not possible in all cases, the approximation according to Level II is generally possible. While the 

cross-section dimensions or the number of connecting elements can be determined relatively 

unproblematic for the new construction of structures, a partial safety factor that is set too high for 

simplification reasons may lead to a replacement of the supposedly undersized cross-section for 

recalculations in the existing structure. The replacement with higher dimensioned components is more 

expensive than the use of the same component in new constructions. In Figure 1, this can be seen in a 

line of reinforcement costs that grows faster than in new constructions.  

 

Figure 1: optimal safety level 

The reasons are the re-establishment of a construction site, anchoring work and the possible necessity 

for the decommissioning of the OHL. The construction work can also damage the structure by 

introducing constraints. By dividing into areas with different damage consequences in the course of the 

OHLs, it is also possible to use resources preferentially in areas where only very small probabilities of 

failure can be accepted, instead of using the same resources in all areas regardless of their damage 

consequences. 

 

2.2.   Reliability level for towers 

From Figure 1 it can be seen that with increasing consequential damage costs, the minimum of the total 

costs shifts to high optimal safety levels despite increasing reinforcement costs.  

VDE-AR-N 4210-4 distinguishes five safety levels with target reliability indices according to Table II. 
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Table II: Safety levels and target safety indices 

Required reliability indices of the pylon system (according to table 7 VDE-AR-N4210-4:2014-08) 

Reliability level 
required ����,���  

permitted �	���,���  Site-dependent 

hazard 
examples 

1 4.3 8.5 ∙ 10�� very high stadiums 

2 3.8 7.2 ∙ 10�� 
High (reference 

level) 
motorways 

3 3.3 4.8 ∙ 10�� Medium Railway station building 

4 3.0 1.35 ∙ 10�� Low  Parking spaces 

5 2.6 4.7 ∙ 10�� Very low Forest area 

 

The target reliability index of = 3.8 of the reference level was obtained by the reliability-theoretical 

recalculation of a large number of pylons designed according to EN 50341-2-4 [1] on the basis of 1-year 

extreme value distributions. This is followed above by reliability level 1, in which the accepted 

probability of failure had to be reduced by about one order of magnitude due to significantly higher 

damage consequences compared to the reference level. Below the reference level, reliability levels 3, 4 

and 5 follow, in which higher probabilities of failure could be accepted due to smaller consequences of 

damage. 

 

2.3.   Verification procedure 

The verification is carried out by comparing the existing reliability index (existing ����) of the technical 

structure, which is directly related to the failure probability ��� ! , with the site-dependent required 

reliability index (required ����). 

Each component of a steel lattice pylon can lose its function due to several failure mechanisms, which 

are described by components. According to the pessimistic assumption of a series system, the entire 

system fails if a single component fails.  

A component failure can be caused, for example, by tensile, compressive, shear, hole friction or block 

failure.  

 

2.4.   Limit state functions 

The limit state function is the difference function between capacity, i.e. the resistance r(x) of a 

component or fastener in structural mechanics, and the stress consuming it, i.e. the stress or internal 

force in the cross-section s(x) in structural mechanics, caused by external actions. Each failure 

mechanism corresponds to a component of the structure. Resistance and stress, and thus also the limit 

state function itself, depend on generally several random variables x. Their magnitude is not precisely 

known, only that of the limit state function. Their magnitude is not known exactly, only the probabilities 

with which certain variable realisations are undercut or maximally achieved. If the variables are realised 

in such a way that g(x) = r(x) - s(x) > 0, survival is present. If the variables are realised in such a way 

that g(x) = r(x) - s(x) < 0, failure is present. The probability with which < 0 occurs is the interesting 

failure probability Pf (see Figure 2). For lattice steel pylons, four failure possibilities can be defined in 

a simplified way in accordance with VDE-AR-N 4210-4: Compression, tension, shearing and pitting. 

Thus, the following limit state functions result: 

 "# = %#('�) − *(+); ", = %,('-) − *(+); ". = %.('-/,�0123) − *(+); "4 = %4('-,4) − *(+) (1) 

 
OHL pylons are predominantly stressed by wind. Depending on the wind zone, a given characteristic 

stress 56 = 5(78.9:)  includes a certain gust velocity pressure 76 = 78.9: ( 7;(<) according to DIN EN 

1991-1-4/NA [5]). There is a linear relationship between dynamic pressure and the acting force.  This 

allows the wind speed associated with the stress to be determined. 
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=(>?.@A)>?.@A = �(>(B))>(B) → *D7(E)F = =(>?.@A)>?.@A ∙ 7(E) →  *(E) = =(>?.@A)HI∙JKLMN∙B?.@AI ∙ OP ∙ Q4-�R ∙ EP = =(>?.@A)B?.@AI ∙ EP  (2) 

 

Now, taking into account the resistance side, the limit functions for the four failure possibilities 

considered can be formulated as follows. "# = S ∙ T2�� ∙ '� − *(E) = S ∙ T2�� ∙ '� − 5(78.9:)E8.9:P ∙ EP (3) 

", = T=2 ∙ '- − *(E) = T=2 ∙ '- − 5(78.9:)E8.9:P ∙ EP (4) 

". = U T�0123 ∙ '-/,�0123 − *(E) =  U T�0123 ∙ '-/,�0123 − 5(78.9:)E8.9:P ∙ EP (5) 

"4 = U V ∙ W ∙ '-,4 − *(E) =  U V ∙ W ∙ '-,4 − 5(78.9:)E8.9:P ∙ EP (6) 

 

By defining the constructive properties, all points can be determined which are located on the limit state 

function g = 0. The limit state functions can then be represented graphically (see Figure 3).  

 

Figure 2: Limit state function in the original space 

 
Figure 3: Example of limit state functions in the original 

space for four failure modes 

 

2.5.   Stochastic models 

Stochastic models must be set up for probabilistic calculation. The term model indicates that there is a 

difference between actual frequencies of variable realisations and the probabilities predicted by 

mathematical formulae. However, suitable distributions, characterised by type and characteristic values, 

are described in the literature for the resistances to be applied in steel construction, e.g. the yield strength 

fy, and the actions prevailing in OHL construction, e.g. the gust wind velocity v. The model is suitable 

if it is possible to determine the type and characteristic values by means of the mathematical formulae. 

The suitability is given if it could be shown by statistical fitting tests that there is no great difference 

between the actual frequency and the frequency predicted by the stochastic model of a variable 

realisation in the vicinity of the design point.   

For the stochastic modelling of the gust wind speeds v, an extreme value distribution type III with 

variation coefficient X = Y Z⁄ = 0.16 and a positive curvature parameter  = 0.06 is assumed according 

to VDE-AR-N 4210-4. This distribution is suitable for describing annual, largest impact realisations for 

which a maximum value +]^_ can be justified.  

Cumulative distribution function [6]: 
 

(̀_) = a+b c− d'O − 'P ∙ e+ − fgYg hiO j⁄ k (7) 

 

Distribution density function: 

 

survival space 

failure space 
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'(_) = 'PYg ∙ l ∙ d'O − 'P ∙ e+ − fgYg himOj�On ∙ a+b c− d'O − 'P ∙ e+ − fgYg hiO j⁄ k (8) 

 

With: 'O = o(1 + l) = 0.96874 and 'P = ro(1 + 2l) − 'OP = 0.07160  

 

  
Figure 4: Distribution density functions Extreme value type 

III of the gust wind speeds (10m above ground level) 

Figure 5: Cumulative distribution functions Extreme value 

type III of the gust wind speeds (10m above ground level) 

The stressability of all failure modes is described by means of a lognormal distribution (VDE-AR-N 

4210-4, 7.3.6). The distribution density function is given as follows: 

 

'(+) = O√P∙t∙uvw∙_ ∙ a� (vwxyzvw)II∙{vwI
  (9) 

 

The cumulative distribution function can be represented by the numerical calculation of the x-values. 

Taking into account the distribution parameters mean value m and standard deviation σ specified in 

VDE-AR-N 4210-4, the functions can be represented graphically: 

 
Figure 6: Distribution density functions of the lognormal 

distributed yield strength for S235 

 
Figure 7: Cumulative distribution functions of the 

lognormal distributed strength 

2.6.   Standardisation 

Limit states are then transformed into the standard space (Φ(}) = `(+)) and the design point ud = u* is 

determined, which is located on the limit state g(u) = 0 with the smallest distance to the origin. The 

length of this distance is the reliability index β of the component.  
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For the transformation, all function values in the original space F(x) are set equal to all function values 

in the standard space Φ(u). Thus, the function value of an x-variable in the original space is equal to the 

function value in the standard space. It can be assumed: 

 `(+) = Φ(}) → } = Φ�O~`(+)� (10) 

 

After standardising the limit state for each failure mechanism, determine the shortest distance between 

g(x) = 0 and the origin. This distance corresponds to the reliability index β. 

 
Figure 8: Example limit state functions in standard space for four 

failure modes 

 
Figure 9: Reliability index 

The relationship between the reliability index and the probability of failure is evident from the spatial 

representation of the standard space. With the help of the bivariate standard normal distribution Φ2, 

which represents the dependence between two independent variables, the probability of failure can now 

be determined for each component. 

Figure 10: Bivariate standard normal distribution and limit functions in 

standard space 

 
Figure 11: Bivariate standard normal 

distribution and limit functions in standard 

space (top view) 

The limit state functions cut out a solid from a Gaussian bell at a distance from the standard normal 

distribution density perpendicular to the plane of the axis. Its size corresponds to the failure probability 
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Pf. The further g(x) = 0 is from the origin, the larger is β and the smaller is Pf. The point on g(x) = 0 at 

the shortest distance from the origin is called the design point. It is perpendicular to the origin. 

The coordinates of the design point are calculated iteratively with the help of the Rackwitz-Fiessler 

algorithm [7]: 

 }(6�O) = �"(}(6))��"(}(6))�P ∙ �(}(6))� ∙ �"D}(6)F − "(}(6))� (11) 

 

The partial derivatives contained are calculated by numerical differentiation. If no significant changes 

occur for all variables i between two iteration steps k and k+1, e.g. max | ui(k+1)-ui(k) | < 0.001, the 

iteration is terminated and the reliability index of a component j is calculated using the Pythagorean 

theorem: 

 �� = �U }�P�  
(12) 

 

The associated probability of failure is: 

 � = −Φ�OD��F → �� = Φ(−�) →  �� = � O√Pt ∙ a+b m− �IP n  V<����    (13) 

 

The First Order Reliability Method (FORM) assumes a straight course of g(x) = 0. If this straight course 

actually exists, Figure 12 (shown on the left), the exact value of �� = Φ(−�) is also known. However, 

g(x) = 0 is usually curved, so that the FORM solution is only an approximation. This approximation can 

be improved by calculating the curvatures of the limit state in xd in addition to the coordinates xd of the 

design point [8]. With knowledge of these curvatures, more exact SORM solutions can be calculated. In 

the case of a concave course, Figure 12 (shown in the centre), the value Pf calculated according to FORM 

is given by 
 

�� ≈ Φ(−�) ∙ � �1 − �(�)Φ(−�) ∙ ����OP��O
��O  (14) 

is reduced, in the case of a convex course an increase takes place, Figure 12 (shown on the right). 

 

Figure 12: Representation of the limit state function in standard space 
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In addition, so-called sensitivities α = ud /  are calculated from the design point and the reliability index, 

which represent the sensitivity of the system by a certain variable. The correlation matrix is determined 

from the sensitivity matrix: 

 Q = �� ∙ � (15) 

 

2.7.   Reliability index of a system 

Once all component failure probabilities are known, the system failure probability must still be 

calculated. In general, it is not desirable for structures to have individual components that are defective, 

even if the entire structure has not yet collapsed. Otherwise, all defective components would have to be 

detected by inspection and replaced as part of repair measures to prevent overstressing of the remaining 

components. According to this pessimistic model of a series system, a system failure already exists when 

the first component fails. The system failure probability of a series system is always higher than the 

highest component failure probability, especially if the highest component failure probabilities can be 

found in many components and their safety margins are not strongly stochastically interdependent.  

An elementary upper bound is the simple summation of all component failure probabilities. However, 

with a large number of components, an unrealistically high system failure probability is calculated, 

which could even exceed 1. This simple calculation does not take into account that for some variable 

realisations several components can fail at the same time. The probabilities for such variable realisations 

must then only be included once in the sum, not several times for all affected components. This 

probability is conform to the solid that g1 = 0 and g2 = 0 cut out from the Gaussian bell in Figure 13. 

 

Figure 13: Failure space for two components 

The effect of the failure of several components under the same variable realisation occurs particularly 

often when the safety margins of the components are strongly stochastically dependent on each other. 

This is the case with steel structures that are predominantly stressed by wind, because almost all 

components have a high sensitivity to variable wind speed. A very good way to capture this effect is the 

upper bound of the system failure probability according to Ditlevsen [9] and [10]. The probability of the 

simultaneous failure of a pair of components (j and b) is subtracted from the sum of the component 

failure probabilities using the standardised bivariate normal distribution: 

 ��,��� ≤ Z�� � 1∑ ��"�D+F < 0�6��O − ∑ Z�+(/��)ΦP(−��, −�/; Q�,/)6��P   (16) 

 

The reliability index ���� = −Φ�O(��,���) is calculated from the failure probability of the overall 

system ��,���, which is compared with the required reliability level of the site. 

The safety present in the probabilistic calculation can be identified by back-calculating reliability 

coefficients. This is done using the reliability index and the characteristic value associated with it. A 

comparison with a semi-probabilistic calculation (Level I) is thus simplified. 
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3. Case Study 

The theory of calculating reliability indices is presented below using an example. Consider two pressure 

diagonals in the wall perpendicular to the line of a supporting pylon as shown in Figure 14. Both bar 

forces are triggered exclusively by the gust velocity pressure. If the wind speed v should realise its 0.98 

quantile v0.98 = 32.6 m/s, diagonal D1 reacts to this with 95 kN, diagonal D2 with 80kN. 

 
Figure 14: Two pressure diagonals in the wall perpendicular to a support pylon 

For the diagonals considered as examples, the stochastic model is summarised in the table below: 

 
Table III: Stochastic model of the capacities for pressure, tension, bolts and wind velocity 10 m above ground 

Stochastic variable Distribution 

type 

Mean value 

μ 

Standard deviation 

σ 

Maximum 

value xmax 

Effective area Aeff1 Constant 1550 mm² - - 

Effectiv area Aeff2 Constant 1390 mm² - - 

Reduction factor χ1 Constant 0.410 - - 

Reduction factor χ2 Constant 0.275 - - 

Yield strength fy1 Lognormal 280 N/mm² 23 N/mm² - 

Yield strength fy2 Lognormal 380 N/mm² 20 N/mm² - 

Wind velocity v Extreme (III) 23.32 m/s 3.73 m/s 73.8 m/s 

 

For the pressure diagonal D1 according to Figure 14, for example, the iteration sequence is set up 

according to the Rackwitz-Fiessler algorithm in Table IV. The iteration starts for the wind speed v with 

the 0.98 quantile, (+2.054) = 0.98, for the yield strength with the 0.05 quantile, (-1.645) = 0.05. 
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Table IV: Design point search for the pressure failure mode of beam D1 

k uv v [m/s] 
� �¡¢ ufy1 fy1 [N/mm²] 

� �¡	�£ 
g [N] �U ¡¤¥¤  max|ui

(k+1)-ui
(k)| 

0 +2.054 32.57 -35296 -1.645 243.8 +12708 +59979 2.632 - 

1 +3.385 41.44 -52518 -1.452 247.7 +12911 +3660 3.683 1.331 

2 +3.592 42.903 -54673 -0.892 259.4 +13518 -4.07 3.701 0.560 

3 +3.592 42.909 -54681 -0.888 259.5 +13522 +0.39 3.700 0.004 

4 +3.592 42.909 -54681 -0.888 259.5 +13522 -0.45 3.700 0.000 

 

After four iteration steps the iteration can be aborted. With the design point coordinates }g¦ =+3.592 (§¨ = 42.909Z/*) and  }� H¦ = −0.888 ('�O¦ = 259.55/ZZP) ufy1d=-0.888 (vd = 259.5 

N/mm²) the most probable variable realisation triggering a failure is found. The design point is at g = 0. 

The reliability index is 

 �#H = ª3.592P + 0.888² = 3.700 (17) 

 

With this the probability of failure is �� = Φ(−3.70) = 1.077 ∙ 10��. The sensitivities of both variables 

are as follows 

 m �g���On = e }g/�}��O/�h = e+3.592/3.700−0.888/3.700h = m+0.9708−0.2401n (18) 

 

The reliability index of the pressure diagonal D2 is 

 �#I = ª3.632P + 0.581² = 3.678 (19) 

 

The probability of failure �� = Φ(−3.678) = 1.174 ∙ 10��. The sensitivities of both variables are: 

 m �g���Pn = e }g/�}��P/�h = e+3.632/3.678−0.581/3.678h = m+0.9875−0.1576n (20) 

 

The exact SORM solution is now determined with the help of the correction factor. First, a new 

coordinate system is introduced whose first axis v1 runs through the design point ud. For the pressure 

diagonal D1 the rotation matrix in the standard space coordinate system is 

 ¬ = ­+0.97076 −0.24006−0.24006 −0.97076® (21) 

 

In this coordinate system, the matrix of the second and mixed derivatives of the limit state at the design 

point is calculated. Numerical differentiation for D1 results in 

 

-̄ =
⎣⎢⎢
⎢⎡ ³²"³}gP

³²"³}g ∙ ³}��³²"³}g ∙ ³}��
³²"³}��P ⎦⎥⎥

⎥⎤ = ­−9938 00 1109® (22) 

 

and in the rotated v-coordinate system 
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ḡ = ¬� ∙ -̄ ∙ ¬ = ­−9301 25742574 472 ® (23) 

 

The characteristic equation 

 

VaW · ¯̧g³"³§O
− � ∙ ¹º = 0 (24) 

 

is solved for the vector  of curvatures of the limit state at the design point. ¯̧g is the matrix according 

to ḡ after deleting the first row and the first column, i.e. the number of curvatures is smaller than the 

number of variables by 1. In the case of the pressure diagonal D1, ¯̧g degenerates to the number 472. 

The first derivatives of the limit state at the design point are 

 ∇"D§F = ¬ ∙ ∇"D}F = ­+0.97076 −0.24006−0.24006 −0.97076® ∙ ­−5468113522 ® = ­−563280 ® (25) 

 

Thus, the characteristic equation results in 

 

VaW · ¯̧g³"³§O
− � ∙ ¹º = 472−56328 − � ∙ 1 = 0 → � = −0.00838 (26) 

 

The SORM improved failure probability for pressure diagonal D1 is then 

 

�� ≈ Φ(−3.700) ∙ ¼1 − 4.248 ∙ 10��1.077 ∙ 10�� ∙ (−0.00838)½�OP = 1.077 ∙ 10�� ∙ 0.9839= 1.059 ∙ 10�� 

(27) 

 

There is a slightly concave course of the limit state at the design point. The probability of failure is 

actually somewhat smaller than when assuming a straight-line limit state. The reliability index � 

increases minimally to 

 � = −Φ�O(1.059 ∙ 10��) = 3.705 (28) 
 

The correlation matrix is obtained by multiplying the transposed sensitivity matrix �� by the sensitivity 

matrix. For variables on which a reliability index does not depend, use 0. 

 ¾ = ­0.9708 −0.2401 00.9875 0 −0.1576® ∙ ¿ 0.9708 0.9875−0.2401 00 −0.1576À = d 1 0,95860,9586 1 i (29) 

 

With ΦPD−��, −�/; ¾�,/F = ΦP(−3.700, −3.678;  0.9586) = 6.488 ∙ 10�� as the probability 

for the occurrence of variable realisations that cause both components to fail, the upper bound of the 

system failure probability is given by  

 ��,��� ≤ 1.059 ∙ 10�� + 1.166 ∙ 10�� − 6.488 ∙ 10�� = 1.576 ∙ 10�� (30) 

 

The system failure probability according to Ditlevsen is about 1.5 times higher than the highest 

component failure probability. A simple summation of the component failure probabilities would lead 
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to a potential doubling. The reliability index of the system decreases compared to the smallest 

component reliability index from 3.678 to 

 � = −Φ�O(1.576 ∙ 10��) = 3.602 (31) 
 

4. Conclusion 

Efficient and sustainable use of resources is becoming increasingly important in many areas of society 

and the environment, and is therefore also a goal of grid operation. 

With the probabilistic verification method, it is possible to maintain the existing grid according to 

individual safety levels with optimised labour. With the stochastic models of probabilistic, actions and 

resistances can be described very accurately, whereby an efficient stability verification of lattice pylons 

can be carried out. 

The development of the probabilistic safety concept for lattice pylons can be applied to other areas of 

the energy grid. It thus offers great technical potential to ensure electrical supply security in the long 

term with a stable power grid. 
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